13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Polymeric Immunoglobulin Receptor Down-regulation in Chronic Obstructive Pulmonary Disease. Persistence in the Cultured Epithelium and Role of Transforming Growth Factor-β

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The generation of protective secretory IgA relies on the epithelial polymeric immunoglobulin receptor (pIgR). pIgR expression is reduced in chronic obstructive pulmonary disease (COPD), but correlation to disease severity and underlying mechanisms remains unknown.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The impact of TGF-β on lung fibrosis: from targeting to biomarkers.

          Transforming growth factor-β (TGF-β) is extensively involved in the development of fibrosis in different organs. Overproduction or potentiation of its profibrotic effects leads to an aberrant wound healing response during the initiation of fibrotic processes. Idiopathic pulmonary fibrosis (IPF) is a chronic, devastating disease, in which TGF-β\x{2013}induced disturbances of the homeostatic microenvironment are critical to promote cell activation, migration, invasion, or hyperplastic changes. In addition, excess extracellular matrix production contributes in a major way to disease pathogenesis. For this reason, this review will focus on discussing novel data and highlight growing interest in deepening the understanding of the profibrotic role of TGF-β and its direct or indirect targeting for disease modulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress and redox regulation of lung inflammation in COPD.

            Reactive oxygen species, either directly or via the formation of lipid peroxidation products, may play a role in enhancing inflammation through the activation of stress kinases (c-Jun activated kinase, extracellular signal-regulated kinase, p38) and redox-sensitive transcription factors, such as nuclear factor (NF)-kappaB and activator protein-1. This results in increased expression of a battery of distinct pro-inflammatory mediators. Oxidative stress activates NF-kappaB-mediated transcription of pro-inflammatory mediators either through activation of its activating inhibitor of kappaB-alpha kinase or the enhanced recruitment and activation of transcriptional co-activators. Enhanced NF-kappaB-co-activator complex formation results in targeted increases in histone modifications, such as acetylation leading to inflammatory gene expression. Emerging evidence suggests the glutathione redox couple may entail dynamic regulation of protein function by reversible disulphide bond formation on kinases, phosphatases and transcription factors. Oxidative stress also inhibits histone deacetylase activity and in doing so further enhances inflammatory gene expression and may attenuate glucocorticoid sensitivity. The antioxidant/anti-inflammatory effects of thiol molecules (glutathione, N-acetyl-L-cysteine and N-acystelyn, erdosteine), dietary polyphenols (curcumin-diferuloylmethane, cathechins/quercetin and reserveratol), specific spin traps, such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (extracellular superoxide dismutase (SOD) mimetic, SOD mimetic M40419 and SOD, and catalase manganic salen compound, eukarion-8), porphyrins (AEOL 10150 and AEOL 10113) and theophylline have all been shown to play a role in either controlling NF-kappaB activation or affecting histone modifications with subsequent effects on inflammatory gene expression in lung epithelial cells. Thus, oxidative stress regulates both key signal transduction pathways and histone modifications involved in lung inflammation. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in chronic obstructive pulmonary disease are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic bronchitis and chronic obstructive pulmonary disease.

              Chronic bronchitis (CB) is a common but variable phenomenon in chronic obstructive pulmonary disease (COPD). It has numerous clinical consequences, including an accelerated decline in lung function, greater risk of the development of airflow obstruction in smokers, a predisposition to lower respiratory tract infection, higher exacerbation frequency, and worse overall mortality. CB is caused by overproduction and hypersecretion of mucus by goblet cells, which leads to worsening airflow obstruction by luminal obstruction of small airways, epithelial remodeling, and alteration of airway surface tension predisposing to collapse. Despite its clinical sequelae, little is known about the pathophysiology of CB and goblet cell hyperplasia in COPD, and treatment options are limited. In addition, it is becoming increasingly apparent that in the classic COPD spectrum, with emphysema on one end and CB on the other, most patients lie somewhere in the middle. It is known now that many patients with severe emphysema can develop CB, and small airway pathology has been linked to worse clinical outcomes, such as increased mortality and lesser improvement in lung function after lung volume reduction surgery. However, in recent years, a greater understanding of the importance of CB as a phenotype to identify patients with a beneficial response to therapy has been described. Herein we review the epidemiology of CB, the evidence behind its clinical consequences, the current understanding of the pathophysiology of goblet cell hyperplasia in COPD, and current therapies for CB.
                Bookmark

                Author and article information

                Journal
                American Journal of Respiratory and Critical Care Medicine
                Am J Respir Crit Care Med
                American Thoracic Society
                1073-449X
                1535-4970
                September 2014
                September 2014
                : 190
                : 5
                : 509-521
                Article
                10.1164/rccm.201311-1971OC
                25078120
                8c2b9ea5-28cc-434b-8f02-2e280fc3a676
                © 2014
                History

                Comments

                Comment on this article