6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interior X-ray diffraction tomography with low-resolution exterior information

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          X-ray diffraction tomography (XDT) resolves spatially-variant XRD profiles within macroscopic objects, and provides improved material contrast compared to the conventional transmission-based computed tomography (CT). However, due to the small diffraction cross-section, XDT suffers from long imaging acquisition time, which could take tens of hours for a full scan using a table-top X-ray tube. In some medical and industrial imaging applications, only the XRD measurement within a region-of-interest (ROI) is required, which, together with the demand to reduce imaging time and radiation dose to the sample, motivates the development of interior XDT systems that scan and reconstruct only an internal region within the sample. Though interior XDT reconstruction using prior knowledge within the ROI can reduce truncation artifacts, it often also causes erroneous reconstruction of fine features. Here we propose a quasi-interior XDT scheme that utilizes a small fraction of projection information from the exterior region to assist interior reconstruction. The low-resolution exterior projection data removes the requirement of prior knowledge about the sample, and allows the ROI reconstruction to be performed with the fast, widely-used CT back-projection algorithm for easy integration onto real-time XDT scanning modules.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

          When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis

            Hydroxyapatite (HA) nanocrystals are key constituents of the bone extracellular matrix and thus likely to influence the pathogenesis of breast cancer skeletal metastasis. However, there is currently an insufficient understanding of HA nanocrystal properties at sites prone to bone metastasis formation. Here we report a novel application of X-ray scattering and Raman imaging to characterize HA nanostructure in mouse models of breast cancer. Our results suggest that bone regions linked with the initiation of metastasis contain less-mature HA nanocrystals and that mammary tumors enhance HA nanocrystal immaturity in these regions even prior to secondary tumor formation. Insights from this work will significantly advance the development of mineralized culture models to investigate how the bone microenvironment regulates breast cancer metastasis. Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              X-ray scatter tomography for explosives detection

              G. Harding (2004)
                Bookmark

                Author and article information

                Journal
                20 July 2018
                Article
                1807.08005
                8c35dea2-bd06-40bb-a590-f3a198bd9acd

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                10 pages, awaiting major revision
                physics.med-ph

                Medical physics
                Medical physics

                Comments

                Comment on this article