36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Study on the Association between Ambient Air Pollution and Daily Cardiovascular and Respiratory Mortality in an Urban District of Beijing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The association between daily cardiovascular/respiratory mortality and air pollution in an urban district of Beijing was investigated over a 6-year period (January 2003 to December 2008). The purpose of this study was to evaluate the relative importance of the major air pollutants [particulate matter (PM), SO 2, NO 2] as predictors of daily cardiovascular/respiratory mortality. The time-series studied comprises years with lower level interventions to control air pollution (2003–2006) and years with high level interventions in preparation for and during the Olympics/Paralympics (2007–2008). Concentrations of PM 10, SO 2, and NO 2, were measured daily during the study period. A generalized additive model was used to evaluate daily numbers of cardiovascular/respiratory deaths in relation to each air pollutant, controlling for time trends and meteorological influences such as temperature and relative humidity. The results show that the daily cardiovascular/respiratory death rates were significantly associated with the concentration air pollutants, especially deaths related to cardiovascular disease. The current day effects of PM 10 and NO 2 were higher than that of single lags (distributed lags) and moving average lags for respiratory disease mortality. The largest RR of SO 2 for respiratory disease mortality was in Lag02. For cardiovascular disease mortality, the largest RR was in Lag01 for PM 10, and in current day (Lag0) for SO 2 and NO 2. NO 2 was associated with the largest RRs for deaths from both cardiovascular disease and respiratory disease.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study.

          Prevention and control of disease and injury require information about the leading medical causes of illness and exposures or risk factors. The assessment of the public-health importance of these has been hampered by the lack of common methods to investigate the overall, worldwide burden. The Global Burden of Disease Study (GBD) provides a standardised approach to epidemiological assessment and uses a standard unit, the disability-adjusted life year (DALY), to aid comparisons. DALYs for each age-sex group in each GBD region for 107 disorders were calculated, based on the estimates of mortality by cause, incidence, average age of onset, duration, and disability severity. Estimates of the burden and prevalence of exposure in different regions of disorders attributable to malnutrition, poor water supply, sanitation and personal and domestic hygiene, unsafe sex, tobacco use, alcohol, occupation, hypertension, physical inactivity, use of illicit drugs, and air pollution were developed. Developed regions account for 11.6% of the worldwide burden from all causes of death and disability, and account for 90.2% of health expenditure worldwide. Communicable, maternal, perinatal, and nutritional disorders explain 43.9%; non-communicable causes 40.9%; injuries 15.1%; malignant neoplasms 5.1%; neuropsychiatric conditions 10.5%; and cardiovascular conditions 9.7% of DALYs worldwide. The ten leading specific causes of global DALYs are, in descending order, lower respiratory infections, diarrhoeal diseases, perinatal disorders, unipolar major depression, ischaemic heart disease, cerebrovascular disease, tuberculosis, measles, road-traffic accidents, and congenital anomalies. 15.9% of DALYs worldwide are attributable to childhood malnutrition and 6.8% to poor water, and sanitation and personal and domestic hygiene. The three leading contributors to the burden of disease are communicable and perinatal disorders affecting children. The substantial burdens of neuropsychiatric disorders and injuries are under-recognised. The epidemiological transition in terms of DALYs has progressed substantially in China, Latin America and the Caribbean, other Asia and islands, and the middle eastern crescent. If the burdens of disability and death are taken into account, our list differs substantially from other lists of the leading causes of death. DALYs provide a common metric to aid meaningful comparison of the burden of risk factors, diseases, and injuries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease.

            Epidemiologic studies have linked long-term exposure to fine particulate matter air pollution (PM) to broad cause-of-death mortality. Associations with specific cardiopulmonary diseases might be useful in exploring potential mechanistic pathways linking exposure and mortality. General pathophysiological pathways linking long-term PM exposure with mortality and expected patterns of PM mortality with specific causes of death were proposed a priori. Vital status, risk factor, and cause-of-death data, collected by the American Cancer Society as part of the Cancer Prevention II study, were linked with air pollution data from United States metropolitan areas. Cox Proportional Hazard regression models were used to estimate PM-mortality associations with specific causes of death. Long-term PM exposures were most strongly associated with mortality attributable to ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. For these cardiovascular causes of death, a 10-microg/m3 elevation in fine PM was associated with 8% to 18% increases in mortality risk, with comparable or larger risks being observed for smokers relative to nonsmokers. Mortality attributable to respiratory disease had relatively weak associations. Fine particulate air pollution is a risk factor for cause-specific cardiovascular disease mortality via mechanisms that likely include pulmonary and systemic inflammation, accelerated atherosclerosis, and altered cardiac autonomic function. Although smoking is a much larger risk factor for cardiovascular disease mortality, exposure to fine PM imposes additional effects that seem to be at least additive to if not synergistic with smoking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994.

              Air pollution in cities has been linked to increased rates of mortality and morbidity in developed and developing countries. Although these findings have helped lead to a tightening of air-quality standards, their validity with respect to public health has been questioned. We assessed the effects of five major outdoor-air pollutants on daily mortality rates in 20 of the largest cities and metropolitan areas in the United States from 1987 to 1994. The pollutants were particulate matter that is less than 10 microm in aerodynamic diameter (PM10), ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide. We used a two-stage analytic approach that pooled data from multiple locations. After taking into account potential confounding by other pollutants, we found consistent evidence that the level of PM10 is associated with the rate of death from all causes and from cardiovascular and respiratory illnesses. The estimated increase in the relative rate of death from all causes was 0.51 percent (95 percent posterior interval, 0.07 to 0.93 percent) for each increase in the PM10 level of 10 microg per cubic meter. The estimated increase in the relative rate of death from cardiovascular and respiratory causes was 0.68 percent (95 percent posterior interval, 0.20 to 1.16 percent) for each increase in the PM10 level of 10 microg per cubic meter. There was weaker evidence that increases in ozone levels increased the relative rates of death during the summer, when ozone levels are highest, but not during the winter. Levels of the other pollutants were not significantly related to the mortality rate. There is consistent evidence that the levels of fine particulate matter in the air are associated with the risk of death from all causes and from cardiovascular and respiratory illnesses. These findings strengthen the rationale for controlling the levels of respirable particles in outdoor air.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                101238455
                International Journal of Environmental Research and Public Health
                Molecular Diversity Preservation International (MDPI)
                1661-7827
                1660-4601
                June 2011
                9 June 2011
                : 8
                : 6
                : 2109-2123
                Affiliations
                [1 ] Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Beijing 100101, China; E-Mails: fy-zhang05@ 123456hotmail.com (F.Z.); t.krafft@ 123456geomed-research.eu (T.K.); lvyuan0403@ 123456hotmail.com (J.L.)
                [2 ] Graduate University of Chinese Academy of Sciences, Beijing 100049, China
                [3 ] Injury Prevention Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China; E-Mails: lipingli65@ 123456gmail.com (L.L.); bailiazhu@ 123456126.com (D.P.)
                [4 ] Department of International Health, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: wangwy@ 123456igsnrr.ac.cn ; Tel.: +86-10-6488-9286; Fax: +86-10-6485-6504.
                Article
                ijerph-08-02109
                10.3390/ijerph8062109
                3138014
                21776219
                8c37bf5a-1dc0-4188-a292-439f21c14ba8
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 17 April 2011
                : 20 May 2011
                Categories
                Article

                Public health
                mortality,respiratory disease,cardiovascular disease,environmental exposure,air pollutants

                Comments

                Comment on this article