0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Uremic toxicity, oxidative stress, and hemodialysis as renal replacement therapy.

      Seminars in Dialysis
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with uremia are subject to greatly increased cardiovascular risk that cannot be completely explained by traditional cardiovascular risk factors. An increase in oxidative stress and inflammation has been proposed as contributory nontraditional uremic cardiovascular risk factors. Oxidative stress reflects the balance between oxidant generation and antioxidant defense mechanisms. Reduction/oxidation (redox) reactions may result in a stochastic process leading to oxidation of neighboring macromolecules. However, in many instances the reactive oxygen species target particular amino acid residues or lipid moieties. This provides a mechanism by which increased oxidative stress and/or alteration of antioxidant mechanisms can alter cell signaling. In individuals with advanced chronic kidney disease, the redox balance is not in equilibrium and is tipped toward oxidation resulting in the dysregulation of cellular process with subsequent vascular and tissue injury. In this review, the major oxidant and antioxidant pathways and the biomarkers to assess redox status in uremia are discussed, as well as the data linking the pathogenesis of oxidative stress, inflammation, cardiovascular events, and the progressive loss of kidney function in chronic kidney disease.

          Related collections

          Author and article information

          Journal
          20017834
          10.1111/j.1525-139X.2009.00659.x

          Comments

          Comment on this article

          scite_