74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression.

          DNA Ligase IV is responsible for sealing of double-strand breaks (DSBs) during nonhomologous end-joining (NHEJ). Inhibiting Ligase IV could result in amassing of DSBs, thereby serving as a strategy toward treatment of cancer. Here, we identify a molecule, SCR7 that inhibits joining of DSBs in cell-free repair system. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding but not that of T4 DNA Ligase or Ligase I. SCR7 inhibits NHEJ in a Ligase IV-dependent manner within cells, and activates the intrinsic apoptotic pathway. More importantly, SCR7 impedes tumor progression in mouse models and when coadministered with DSB-inducing therapeutic modalities enhances their sensitivity significantly. This inhibitor to target NHEJ offers a strategy toward the treatment of cancer and improvement of existing regimens. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways

            Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin.

              Quercetin, a widely distributed bioflavonoid, has been shown to induce growth inhibition in certain cancer cell types. In the present study we have pursued the mechanism of growth inhibition in MCF-7 human breast cancer cells. Quercetin treatment resulted in the accumulation of cells specifically at G2/M phase of the cell cycle. Mitotic index measured by MPM2 staining clearly showed that cells were transiently accumulated in M phase, 24 h after treatment. The transient M phase accumulation was accompanied by a transient increase in the levels of cyclin B1 and Cdc2 kinase activity. However, 24 h or longer treatment caused a marked accumulation of cells in G2 instead of M phase. Levels of cyclin B1 and cyclin B1-associated Cdc2 kinase activity were also decreased. We also found that quercetin markedly increased Cdk-inhibitor p21CIP1/WAF1 protein level after treatment for 48 h or longer, and the induction of p21CIP1/WAF1 increased its association with Cdc2-cyclin B1 complex, however, up-regulation of p53 by quercetin was not observed. Quercetin also induced significant apoptosis in MCF-7 cells in addition to cell cycle arrest, and the induction of apoptosis was markedly blocked by antisense p21CIP1/WAF1 expression. The present data, therefore, demonstrate that a flavonoid quercetin induces growth inhibition in the human breast carcinoma cell line MCF-7 through at least two different mechanisms; by inhibiting cell cycle progression through transient M phase accumulation and subsequent G2 arrest, and by inducing apoptosis.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                12 April 2016
                2016
                : 6
                : 24049
                Affiliations
                [1 ]Department of Biochemistry, Indian Institute of Science , Bangalore-560 012, India
                [2 ]Institute of Bioinformatics and Applied Biotechnology, Electronics City , Bangalore 560 100, India
                Author notes
                Article
                srep24049
                10.1038/srep24049
                4828642
                27068577
                8c46ebe8-5b80-4070-a904-a4c3419da99c
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 09 April 2015
                : 17 March 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article