13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Editorial: Recent Advances in Geomicrobiology of the Ocean Crust

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Igneous oceanic crust is one of the largest potential habitats for life on earth (Orcutt et al., 2011), and microbial activity supported by rock-water-microbe reactions in this environment can impact global biogeochemical cycles (Bach and Edwards, 2003). However, our understanding of the microbiology of this system, especially the subsurface “deep biosphere” component of it, has traditionally been limited by sample availability and quality. Over the past decade, several major international programs (such as the Center for Dark Energy Biosphere Investigations, the current International Ocean Discovery Program, and its predecessor Integrated Ocean Drilling Program, and the Deep Carbon Observatory) have focused on advancing our understanding of life in this cryptic, yet globally relevant, biosphere. Additionally, many field and laboratory research programs are examining hydrothermal vent systems—a seafloor expression of seawater that has been thermally and chemically altered in subseafloor crust—and the microbial communities supported by these mineral-rich fluids. The papers in this special issue bring together recent discoveries of microbial presence, diversity, and activity in these dynamic ocean environments. Starting at the seafloor where igneous rocks are directly exposed to oxic, bottom seawater, two papers in this special issue address the microbial diversity (Lee et al.) and metagenomic characteristics (Singer et al.) of seafloor basalts. Going deeper below the seafloor where cool, oxic fluids circulate through fractures in the lithosphere, two papers document the biomass and structure (Jørgensen and Zhao) and metabolic potential (Zhang et al.) of biofilms on subsurface basalts from the western flank of the Mid-Atlantic Ridge at a site known as North Pond. A companion project at this same site used a new in situ spectral imaging tool to assess biofilms and biomass in the crustal subsurface (Salas et al.). Basalts from the seafloor and this oxic subsurface environment were used in a survey to assay the magnitude of microbial carbon fixation on basalts, and to identify microbial groups potentially involved in this process (Orcutt et al.). Isolation and description of bacteria from the overlying sediment at North Pond provides a comparison between the crustal microbial communities and those detected in the sediment lying just above (Russell et al.). Comparing these oxic and cool subsurface crustal fluids with warmer and anoxic subsurface crustal fluids from the eastern flank of the Juan de Fuca Ridge, a new nanocalorimetry approach documents the energy available to subsurface crustal fluid communities (Robador et al.). These new approaches help to validate theoretical models of energy availability in the crustal subsurface, such as new work in this special issue on hydrogen production from water-rock reactions (Bach) and radiolysis (Dzaugis et al.). Finally, new time series data from a crustal observatory at the Juan de Fuca Ridge flank reveals the importance of redox conditions and temperature on structuring biofilms forming on crustal rocks (Baquiran et al.). The Juan de Fuca Ridge and flank environment are also loci of recent efforts to cultivate thermophilic organisms. Thermophilic sulfate reducing bacteria were isolated from deep sediment on the ridge flank influenced by the diffusion of sulfate and heat from the underlying igneous basement (Fichtel et al.), and multivariate laboratory experiments were conducted to determine controls on thermophilic sulfate reduction in the hydrothermal sulfide chimney structures nearer to the ridge axis (Frank et al.). The genomes of isolates of Thermococcus from the Juan de Fuca were compared to isolates from other hydrothermal systems to explore thermophile biogeography and adaptation (Price et al.). Moving to a more organic-rich hydrothermal setting, two papers in the special issue explore the microbial residents in the Guaymas Basin in the Gulf of California. A “hiking guide” of Guaymas documents the connection of surface patterns in microbial mats to subsurface gradients in temperature and porewater chemistry (Teske et al.). Honing in on the surface microbial mats, and the resident giant sulfur bacteria therein, an exploration of genomes from these organisms reveals intriguing hints about their possible transcriptional regulation mechanisms (MacGregor). Given that oceanic crust is composed of igneous rocks (e.g., basalt, gabbro, peridotite) enriched in reduced iron, chemosynthetic iron oxidation received focused attention in this special issue. The growth of chemoorganotrophic (Sudek et al.) and chemolithoautotrophic (Henri et al.) iron-oxidizing bacteria in the presence of basalt was investigated with interdisciplinary approaches. Two studies show the early colonization by marine Zetaproteobacteria—neutrophilic, microaerophilic iron-oxidizing bacteria—on surfaces containing reduced iron (Henri et al.; McBeth and Emerson). Zetaproteobacteria also colonize reduced iron substrates in freshwater systems (McBeth and Emerson), and genomes of freshwater iron oxidizing bacteria reveal similarities and differences to their marine cousins (Kato et al.). An exploration of the architecture of the microbial mats generated by freshwater and marine iron-oxidizing bacteria reveals the ecosystem structuring performed by these lithotrophs (Chan et al.). Finally, an intense investigation of the alteration products in active and inactive hydrothermal chimneys reveals diverse signatures of microbial iron oxidation and reduction (Toner et al.). Cumulatively, the articles in this special issue serve as a tribute to the late Dr. Katrina J. Edwards (Figure 1), who was a pioneer and profound champion of studying microbes that “rust the crust” (Bach and Edwards, 2003; Edwards et al., 2003, 2005, 2011a,b, 2012a,b). As co-author on five of the twenty-two papers in this special issue (Lee et al.; Salas et al.; Singer et al.; Baquiran et al.; Toner et al.), and an acknowledged inspiration of several others, Katrina's influence on the field has a lasting legacy. This legacy is eloquently captured in an award-winning feature length documentary about the North Pond ocean drilling project (https://vimeo.com/117447690), a long-term observatory project that Katrina initiated to study deep biosphere crustal microbes (Edwards et al., 2012c). Her legacy lives on in the various collaborators that continue to study microbes that rust the crust, as well as in the scientists that passed through her lab and are now running their own labs, including the editors of this volume. This special issue volume serves as a foundation for the continued exploration of the subsurface ocean crust deep biosphere. Figure 1 Dr. Katrina J. Edwards (1968–2014), a visionary geomicrobiologist who promoted the study of microbes that “rust the crust,” breaking open a seafloor basalt from the North Pond study site in 2012. Photograph by Beth Orcutt. Author contributions All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial ecology of the dark ocean above, at, and below the seafloor.

          The majority of life on Earth--notably, microbial life--occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean-the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.-has increased substantially in recent decades. Studies that try to decipher the activity of microorganisms in the dark ocean, where we cannot easily observe them, are yielding paradigm-shifting discoveries that are fundamentally changing our understanding of the role of the dark ocean in the global Earth system and its biogeochemical cycles. New generations of researchers and experimental tools have emerged, in the last decade in particular, owing to dedicated research programs to explore the dark ocean biosphere. This review focuses on our current understanding of microbiology in the dark ocean, outlining salient features of various habitats and discussing known and still unexplored types of microbial metabolism and their consequences in global biogeochemical cycling. We also focus on patterns of microbial diversity in the dark ocean and on processes and communities that are characteristic of the different habitats.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor.

            Oceanography is inherently interdisciplinary and, since its inception, has included the study of microbe-mineral interactions. From early studies of manganese nodules, to the discovery of hydrothermal vents, it has been recognized that microorganisms are involved at various levels in the transformation of rocks and minerals at and below the seafloor. Recent studies include mineral weathering at low temperatures and microbe-mineral interactions in the subseafloor "deep biosphere". A common characteristic of seafloor and subseafloor geomicrobiological processes that distinguishes them from terrestrial or near-surface processes is that they occur in the dark, one or more steps removed from the sunlight that fuels the near-surface biosphere on Earth. This review focuses on geomicrobiological studies and energy flow in dark, deep-ocean and subseafloor rock habitats.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Deep, Dark Energy Biosphere: Intraterrestrial Life on Earth

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                21 July 2017
                2017
                : 8
                : 1368
                Affiliations
                [1] 1Bigelow Laboratory for Ocean Sciences East Boothbay, ME, United States
                [2] 2Department of Oceanography, Texas A&M University College Station, TX, United States
                [3] 3Department of Earth Sciences, University of Minnesota Minneapolis, MN, United States
                Author notes

                Edited by: Axel Schippers, Federal Institute for Geosciences and Natural Resources, Germany

                Reviewed by: Timothy Ferdelman, Max Planck Institute for Marine Microbiology (MPG), Germany

                *Correspondence: Beth N. Orcutt borcutt@ 123456bigelow.org

                This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.01368
                5519535
                8c4fa761-b88e-4304-9f2a-2f16c228e6eb
                Copyright © 2017 Orcutt, Sylvan and Santelli.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 May 2017
                : 05 July 2017
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 9, Pages: 3, Words: 1721
                Funding
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: OCE-0939564
                Categories
                Microbiology
                Editorial

                Microbiology & Virology
                geomicrobiology,deep biosphere,iodp,ocean crust,iron oxidation
                Microbiology & Virology
                geomicrobiology, deep biosphere, iodp, ocean crust, iron oxidation

                Comments

                Comment on this article