6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Generation of apoptosis-resistant HEK293 cells with CRISPR/Cas mediated quadruple gene knockout for improved protein and virus production

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes.

          Programmed cell death can be divided into several categories including type I (apoptosis) and type II (autophagic death). The Bcl-2 family of proteins are well-characterized regulators of apoptosis, and the multidomain pro-apoptotic members of this family, such as Bax and Bak, act as a mitochondrial gateway where a variety of apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double knockout mice are resistant to apoptosis, we found that these cells still underwent a non-apoptotic death after death stimulation. Electron microscopic and biochemical studies revealed that double knockout cell death was associated with autophagosomes/autolysosomes. This non-apoptotic death of double knockout cells was suppressed by inhibitors of autophagy, including 3-methyl adenine, was dependent on autophagic proteins APG5 and Beclin 1 (capable of binding to Bcl-2/Bcl-x(L)), and was also modulated by Bcl-x(L). These results indicate that the Bcl-2 family of proteins not only regulates apoptosis, but also controls non-apoptotic programmed cell death that depends on the autophagy genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish

            Customized TALENs and Cas9/gRNAs have been used for targeted mutagenesis in zebrafish to induce indels into protein-coding genes. However, indels are usually not sufficient to disrupt the function of non-coding genes, gene clusters or regulatory sequences, whereas large genomic deletions or inversions are more desirable for this purpose. By injecting two pairs of TALEN mRNAs or two gRNAs together with Cas9 mRNA targeting distal DNA sites of the same chromosome, we obtained predictable genomic deletions or inversions with sizes ranging from several hundred bases to nearly 1 Mb. We have successfully achieved this type of modifications for 11 chromosomal loci by TALENs and 2 by Cas9/gRNAs with different combinations of gRNA pairs, including clusters of miRNA and protein-coding genes. Seven of eight TALEN-targeted lines transmitted the deletions and one transmitted the inversion through germ line. Our findings indicate that both TALENs and Cas9/gRNAs can be used as an efficient tool to engineer genomes to achieve large deletions or inversions, including fragments covering multiple genes and non-coding sequences. To facilitate the analyses and application of existing ZFN, TALEN and CRISPR/Cas data, we have updated our EENdb database to provide a chromosomal view of all reported engineered endonucleases targeting human and zebrafish genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line

              Near-haploid human cell lines are instrumental for genetic screens and genome engineering as gene inactivation is greatly facilitated by the absence of a second gene copy. However, no completely haploid human cell line has been described, hampering the genetic accessibility of a subset of genes. The near-haploid human cell line HAP1 contains a single copy of all chromosomes except for a heterozygous 30-megabase fragment of Chromosome 15. This large fragment encompasses 330 genes and is integrated on the long arm of Chromosome 19. Here, we employ a CRISPR/Cas9-based genome engineering strategy to excise this sizeable chromosomal fragment and to efficiently and reproducibly derive clones that retain their haploid state. Importantly, spectral karyotyping and single-nucleotide polymorphism (SNP) genotyping revealed that engineered-HAPloid (eHAP) cells are fully haploid with no gross chromosomal aberrations induced by Cas9. Furthermore, whole-genome sequence and transcriptome analysis of the parental HAP1 and an eHAP cell line showed that transcriptional changes are limited to the excised Chromosome 15 fragment. Together, we demonstrate the feasibility of efficiently engineering megabase deletions with the CRISPR/Cas9 technology and report the first fully haploid human cell line.
                Bookmark

                Author and article information

                Journal
                Biotechnology and Bioengineering
                Biotechnol. Bioeng.
                Wiley
                00063592
                November 2017
                November 2017
                August 17 2017
                : 114
                : 11
                : 2539-2549
                Affiliations
                [1 ]Department of Biochemistry; Laboratory of Gene Therapy; College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi P.R. China
                [2 ]Department of Burns and Cutaneous Surgery; Xijing Hospital; the Fourth Military Medical University; Xi'an Shaanxi China
                [3 ]Department of Pathology; Northwestern University Feinberg School of Medicine; Chicago Illinois
                Article
                10.1002/bit.26382
                28710851
                8c572133-2882-496b-8381-e1015a877be5
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article