34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer.

          Related collections

          Most cited references254

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Graphene: Status and Prospects

          A. K. Geim (2010)
          Graphene is a wonder material with many superlatives to its name. It is the thinnest material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have the smallest effective mass (it is zero) and can travel micrometer-long distances without scattering at room temperature. Graphene can sustain current densities 6 orders higher than copper, shows record thermal conductivity and stiffness, is impermeable to gases and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a bench-top experiment. What are other surprises that graphene keeps in store for us? This review analyses recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD44: from adhesion molecules to signalling regulators.

            Cell-adhesion molecules, once believed to function primarily in tethering cells to extracellular ligands, are now recognized as having broader functions in cellular signalling cascades. The CD44 transmembrane glycoprotein family adds new aspects to these roles by participating in signal-transduction processes--not only by establishing specific transmembrane complexes, but also by organizing signalling cascades through association with the actin cytoskeleton. CD44 and its associated partner proteins monitor changes in the extracellular matrix that influence cell growth, survival and differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heparan sulphate proteoglycans fine-tune mammalian physiology.

              Heparan sulphate proteoglycans reside on the plasma membrane of all animal cells studied so far and are a major component of extracellular matrices. Studies of model organisms and human diseases have demonstrated their importance in development and normal physiology. A recurrent theme is the electrostatic interaction of the heparan sulphate chains with protein ligands, which affects metabolism, transport, information transfer, support and regulation in all organ systems. The importance of these interactions is exemplified by phenotypic studies of mice and humans bearing mutations in the core proteins or the biosynthetic enzymes responsible for assembling the heparan sulphate chains.
                Bookmark

                Author and article information

                Journal
                Int J Cell Biol
                Int J Cell Biol
                IJCB
                International Journal of Cell Biology
                Hindawi Publishing Corporation
                1687-8876
                1687-8884
                2015
                10 September 2015
                : 2015
                : 537560
                Affiliations
                1Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
                2Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, OH, USA
                3Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC 29425, USA
                Author notes
                *Suniti Misra: misra@ 123456musc.edu and
                *Shibnath Ghatak: ghatak@ 123456musc.edu

                Academic Editor: Pavel Hozak

                Article
                10.1155/2015/537560
                4581573
                8c5d62d7-47e8-407c-9266-612baf4e77bf
                Copyright © 2015 Suniti Misra et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 September 2014
                : 19 January 2015
                : 15 February 2015
                Categories
                Review Article

                Cell biology
                Cell biology

                Comments

                Comment on this article