20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      C3 glomerulopathy — understanding a rare complement-driven renal disease

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P3">The C3 glomerulopathies are a group of rare kidney diseases characterized by complement dysregulation occurring in the fluid phase and in the glomerular microenvironment, which results in prominent complement C3 deposition in kidney biopsy samples. The two major subgroups of C3 glomerulopathy — dense deposit disease (DDD) and C3 glomerulonephritis (C3GN) — have overlapping clinical and pathological features suggestive of a disease continuum. Dysregulation of the complement alternative pathway is fundamental to the manifestations of C3 glomerulopathy, although terminal pathway dysregulation is also common. Disease is driven by acquired factors in most patients, namely autoantibodies that target the C3 or C5 convertases. These autoantibodies drive complement dysregulation by increasing the half-life of these vital but normally short-lived enzymes. Genetic variation in complement-related genes is a less frequent cause. No disease-specific treatments are available, although immunosuppressive agents and terminal complement pathway blockers are helpful in some patients. Unfortunately, no treatment is universally effective or curative. In aggregate, the limited data on renal transplantation point to a high risk of disease recurrence (both DDD and C3GN) in allograft recipients. Clinical trials are underway to test the efficacy of several first-generation drugs that target the alternative complement pathway. </p>

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference.

          In both atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) complement plays a primary role in disease pathogenesis. Herein we report the outcome of a 2015 Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference where key issues in the management of these 2 diseases were considered by a global panel of experts. Areas addressed included renal pathology, clinical phenotype and assessment, genetic drivers of disease, acquired drivers of disease, and treatment strategies. In order to help guide clinicians who are caring for such patients, recommendations for best treatment strategies were discussed at length, providing the evidence base underpinning current treatment options. Knowledge gaps were identified and a prioritized research agenda was proposed to resolve outstanding controversial issues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            C3 glomerulopathy: consensus report

            C3 glomerulopathy is a recently introduced pathological entity whose original definition was glomerular pathology characterized by C3 accumulation with absent or scanty immunoglobulin deposition. In August 2012, an invited group of experts (comprising the authors of this document) in renal pathology, nephrology, complement biology, and complement therapeutics met to discuss C3 glomerulopathy in the first C3 Glomerulopathy Meeting. The objectives were to reach a consensus on: the definition of C3 glomerulopathy, appropriate complement investigations that should be performed in these patients, and how complement therapeutics should be explored in the condition. This meeting report represents the current consensus view of the group.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense.

              As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Nephrology
                Nat Rev Nephrol
                Springer Nature
                1759-5061
                1759-507X
                January 28 2019
                Article
                10.1038/s41581-018-0107-2
                6876298
                30692664
                8c5de265-9ab6-4daf-8b46-119928dca187
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article