107
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temperature Dependence of the Extrinsic Incubation Period of Orbiviruses in Culicoides Biting Midges

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The rate at which viruses replicate and disseminate in competent arthropod vectors is limited by the temperature of their environment, and this can be an important determinant of geographical and seasonal limits to their transmission by arthropods in temperate regions.

          Methodology/Principal Findings

          Here, we present a novel statistical methodology for estimating the relationship between temperature and the extrinsic incubation period (EIP) and apply it to both published and novel data on virus replication for three internationally important orbiviruses (African horse sickness virus (AHSV), bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV)) in their Culicoides vectors. Our analyses show that there can be differences in vector competence for different orbiviruses in the same vector species and for the same orbivirus in different vector species. Both the rate of virus replication (approximately 0.017-0.021 per degree-day) and the minimum temperature required for replication (11-13°C), however, were generally consistent for different orbiviruses and across different Culicoides vector species. The estimates obtained in the present study suggest that previous publications have underestimated the replication rate and threshold temperature because the statistical methods they used included an implicit assumption that all negative vectors were infected.

          Conclusions/Significance

          Robust estimates of the temperature dependence of arbovirus replication are essential for building accurate models of transmission and for informing policy decisions about seasonal relaxations to movement restrictions. The methodology developed in this study provides the required robustness and is superior to methods used previously. Importantly, the methods are generic and can readily be applied to other arbovirus-vector systems, as long as the assumptions described in the text are valid.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Bluetongue in Europe: past, present and future.

          The recent arrival in Northern and Western (NW) Europe of bluetongue virus (BTV), which causes the ruminant disease 'bluetongue', has raised the profile of this vector-borne ruminant disease and sparked discussions on the reasons for its sudden emergence so far north. This expansion has not happened in isolation and the disease has been expanding into Southern and Eastern Europe for the last decade. This shifting disease distribution is being facilitated by a number of different introduction mechanisms including the movement of infected livestock, the passive movement of infected Culicoides on the wind and, in NW Europe, an unknown route of introduction. The expansion of BTV in Europe has forced a re-evaluation of the importance of Palaearctic Culicoides species in transmission, as well as the importance of secondary transmission routes, such as transplacental transmission, in facilitating the persistence of the virus. The current European outbreak of BTV-8 is believed to have caused greater economic damage than any previous single-serotype outbreak. Although attempts are being made to improve the capacity of European countries to cope with future BTV incursions, the options available are limited by a lack of basic entomological data and limited virological surveillance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Culicoides and the emergence of bluetongue virus in northern Europe.

            In June 2006, bluetongue virus, an arboviral pathogen of ruminants, appeared in northern Europe for the first time, successfully overwintered and subsequently caused substantial losses to the farming sector in 2007 and 2008. This emergence served as a test of how the probability of arboviral incursion into new regions is assessed and has highlighted the reliance of decision making on paradigms that are not always underpinned by basic biological data. In this review, we highlight those areas of the epidemiology of bluetongue that are poorly understood, reflect upon why certain vital areas of research have received little attention and, finally, examine strategies that could aid future risk assessment and intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              African horse sickness.

              African horse sickness virus (AHSV) causes a non-contagious, infectious insect-borne disease of equids and is endemic in many areas of sub-Saharan Africa and possibly Yemen in the Arabian Peninsula. However, periodically the virus makes excursions beyond its endemic areas and has at times extended as far as India and Pakistan in the east and Spain and Portugal in the west. The vectors are certain species of Culicoides biting midge the most important of which is the Afro-Asiatic species C. imicola. This paper describes the effects that AHSV has on its equid hosts, aspects of its epidemiology, and present and future prospects for control. The distribution of AHSV seems to be governed by a number of factors including the efficiency of control measures, the presence or absence of a long term vertebrate reservoir and, most importantly, the prevalence and seasonal incidence of the major vector which is controlled by climate. However, with the advent of climate-change the major vector, C. imicola, has now significantly extended its range northwards to include much of Portugal, Spain, Italy and Greece and has even been recorded from southern Switzerland. Furthermore, in many of these new locations the insect is present and active throughout the entire year. With the related bluetongue virus, which utilises the same vector species of Culicoides this has, since 1998, precipitated the worst outbreaks of bluetongue disease ever recorded with the virus extending further north in Europe than ever before and apparently becoming endemic in that continent. The prospects for similar changes in the epidemiology and distribution of AHSV are discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                18 November 2011
                : 6
                : 11
                : e27987
                Affiliations
                [1 ]Vector-borne Disease Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
                [2 ]Entomology, ARC Onderstepoort Veterinary Institute, Hatfield, Pretoria, South Africa
                [3 ]Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
                Duke-NUS Graduate Medical School, Singapore
                Author notes

                Conceived and designed the experiments: SC GV PM. Performed the experiments: SC JB EV GV. Analyzed the data: SG AW SC. Wrote the paper: SC AW GV SG PM.

                Article
                PONE-D-11-07904
                10.1371/journal.pone.0027987
                3220716
                22125649
                8c6ea7eb-3ea5-4765-bf9a-fd3337a1c7a0
                Carpenter et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 May 2011
                : 30 October 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Emerging Viral Diseases
                Viral Replication
                Viral Transmission and Infection
                Emerging Infectious Diseases
                Vector Biology
                Veterinary Science
                Veterinary Diseases
                Veterinary Virology
                Veterinary Epidemiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article