Blog
About

21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glucagon secretion and signaling in the development of diabetes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Normal release of glucagon from pancreatic islet α-cells promotes glucose mobilization, which counteracts the hypoglycemic actions of insulin, thereby ensuring glucose homeostasis. In treatment of diabetes aimed at rigorously reducing hyperglycemia to avoid chronic complications, the resulting hypoglycemia triggering glucagon release from α-cells is frequently impaired, with ensuing hypoglycemic complications. This review integrates the physiology of glucagon secretion regulating glucose homeostasis in vivo to single α-cell signaling, and how both become perturbed in diabetes. α-cells within the social milieu of the islet micro-organ are regulated not only by intrinsic signaling events but also by paracrine regulation, particularly by adjacent insulin-secreting β-cells and somatostatin-secreting δ-cells. We discuss the intrinsic α-cell signaling events, including glucose sensing and ion channel regulation leading to glucagon secretion. We then discuss the complex crosstalk between the islet cells and the breakdown of this crosstalk in diabetes contributing to the dysregulated glucagon secretion. Whereas, there are many secretory products released by β- and δ-cells that become deficient or excess in diabetes, we discuss the major ones, including the better known insulin and lesser known somatostatin, which act as putative paracrine on/off switches that very finely regulate α-cell secretory responses in health and diabetes. Of note in several type 1 diabetes (T1D) rodent models, blockade of excess somatostatin actions on α-cell could normalize glucagon secretion sufficient to attain normoglycemia in response to hypoglycemic assaults. There has been slow progress in fully elucidating the pathophysiology of the α-cell in diabetes because of the small number of α-cells within an islet and the islet mass becomes severely reduced and inflamed in diabetes. These limitations are just now being surmounted by new approaches.

          Related collections

          Most cited references 117

          • Record: found
          • Abstract: found
          • Article: not found

          Somatostatin and its receptor family.

           Chirayu Patel (1999)
          Somatostatin (SST), a regulatory peptide, is produced by neuroendocrine, inflammatory, and immune cells in response to ions, nutrients, neuropeptides, neurotransmitters, thyroid and steroid hormones, growth factors, and cytokines. The peptide is released in large amounts from storage pools of secretory cells, or in small amounts from activated immune and inflammatory cells, and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells that are widely distributed in the brain and periphery. These actions are mediated by a family of seven transmembrane (TM) domain G-protein-coupled receptors that comprise five distinct subtypes (termed SSTR1-5) that are endoded by separate genes segregated on different chromosomes. The five receptor subtypes bind the natural SST peptides, SST-14 and SST-28, with low nanomolar affinity. Short synthetic octapeptide and hexapeptide analogs bind well to only three of the subtypes, 2, 3, and 5. Selective nonpeptide agonists with nanomolar affinity have been developed for four of the subtypes (SSTR1, 2, 3, and 4) and putative peptide antagonists for SSTR2 and SSTR5 have been identified. The ligand binding domain for SST ligands is made up of residues in TMs III-VII with a potential contribution by the second extracellular loop. SSTRs are widely expressed in many tissues, frequently as multiple subtypes that coexist in the same cell. The five receptors share common signaling pathways such as the inhibition of adenylyl cyclase, activation of phosphotyrosine phosphatase (PTP), and modulation of mitogen-activated protein kinase (MAPK) through G-protein-dependent mechanisms. Some of the subtypes are also coupled to inward rectifying K(+) channels (SSTR2, 3, 4, 5), to voltage-dependent Ca(2+) channels (SSTR1, 2), a Na(+)/H(+) exchanger (SSTR1), AMPA/kainate glutamate channels (SSTR1, 2), phospholipase C (SSTR2, 5), and phospholipase A(2) (SSTR4). SSTRs block cell secretion by inhibiting intracellular cAMP and Ca(2+) and by a receptor-linked distal effect on exocytosis. Four of the receptors (SSTR1, 2, 4, and 5) induce cell cycle arrest via PTP-dependent modulation of MAPK, associated with induction of the retinoblastoma tumor suppressor protein and p21. In contrast, SSTR3 uniquely triggers PTP-dependent apoptosis accompanied by activation of p53 and the pro-apoptotic protein Bax. SSTR1, 2, 3, and 5 display acute desensitization of adenylyl cyclase coupling. Four of the subtypes (SSTR2, 3, 4, and 5) undergo rapid agonist-dependent endocytosis. SSTR1 fails to be internalized but is instead upregulated at the membrane in response to continued agonist exposure. Among the wide spectrum of SST effects, several biological responses have been identified that display absolute or relative subtype selectivity. These include GH secretion (SSTR2 and 5), insulin secretion (SSTR5), glucagon secretion (SSTR2), and immune responses (SSTR2). Copyright 1999 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoglycaemia: the limiting factor in the glycaemic management of Type I and Type II diabetes.

             P Cryer (2002)
            Hypoglycaemia is the limiting factor in the glycaemic management of diabetes. Iatrogenic hypoglycaemia is typically the result of the interplay of insulin excess and compromised glucose counterregulation in Type I (insulin-dependent) diabetes mellitus. Insulin concentrations do not decrease and glucagon and epinephrine concentrations do not increase normally as glucose concentrations decrease. The concept of hypoglycaemia-associated autonomic failure (HAAF) in Type I diabetes posits that recent antecedent iatrogenic hypoglycaemia causes both defective glucose counterregulation (by reducing the epinephrine response in the setting of an absent glucagon response) and hypoglycaemia unawareness (by reducing the autonomic and the resulting neurogenic symptom responses). Perhaps the most compelling support for HAAF is the finding that as little as 2 to 3 weeks of scrupulous avoidance of hypoglycaemia reverses hypoglycaemia unawareness and improves the reduced epinephrine component of defective glucose counterregulation in most affected patients. The mediator and mechanism of HAAF are not known but are under active investigation. The glucagon response to hypoglycaemia is also reduced in patients approaching the insulin deficient end of the spectrum of Type II (non-insulin-dependent) diabetes mellitus, and glycaemic thresholds for autonomic (including epinephrine) and symptomatic responses to hypoglycaemia are shifted to lower plasma glucose concentrations after hypoglycaemia in Type II diabetes. Thus, patients with advanced Type II diabetes are also at risk for HAAF. While it is possible to minimise the risk of hypoglycaemia by reducing risks -- including a 2 to 3 week period of scrupulous avoidance of hypoglycaemia in patients with hypoglycaemia unawareness -- methods that provide glucose-regulated insulin replacement or secretion are needed to eliminate hypoglycaemia and maintain euglycaemia over a lifetime of diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New drug targets for type 2 diabetes and the metabolic syndrome.

              An insidious increase in features of the 'metabolic syndrome' - obesity, insulin resistance and dyslipidaemia -- has conspired to produce a worldwide epidemic of type 2 insulin-resistant diabetes mellitus. Most current therapies for this disease were developed in the absence of defined molecular targets or an understanding of disease pathogenesis. Emerging knowledge of key pathogenic mechanisms, such as the impairment of glucose-stimulated insulin secretion and the role of 'lipotoxicity' as a probable cause of hepatic and muscle resistance to insulin's effects on glucose metabolism, has led to a host of new molecular drug targets. Several have been validated through genetic engineering in mice or the preliminary use of lead compounds and therapeutic agents in animals and humans.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physio.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                04 September 2012
                2012
                : 3
                Affiliations
                1Departments of Medicine and Physiology, University of Toronto Toronto, ON, Canada
                2Department of Pharmacology, University of Alberta Edmonton, AB, Canada
                Author notes

                Edited by: Wei-Ping Han, Singapore Bioimaging Consortium, Singapore

                Reviewed by: Oksana Sorokina, The University of Edinburgh, UK; Alexey Goltsov, University of Abertay Dundee, UK

                *Correspondence: Herbert Y. Gaisano, Departments of Medicine and Physiology, University of Toronto, Room 7368 Medical Sciences Building, 1 Kings College Circle, Toronto, ON, M5S 1A8, Canada. e-mail: herbert.gaisano@ 123456utoronto.ca
                Patrick E. MacDonald, Department of Pharmacology, University of Alberta, Room 6-126 Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada. e-mail: pmacdonald@ 123456ualberta.ca
                Mladen Vranic, Departments of Medicine and Physiology, University of Toronto, Room 3269 Medical Sciences Building, Toronto, ON, M5S 1A8, Canada. e-mail: mladen.vranic@ 123456utoronto.ca

                †These authors equally contributed to this work.

                This article was submitted to Frontiers in Systems Physiology, a specialty of Frontiers in Physiology.

                Article
                10.3389/fphys.2012.00349
                3432929
                22969729
                Copyright © 2012 Gaisano, MacDonald and Vranic.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 135, Pages: 12, Words: 11264
                Categories
                Physiology
                Review Article

                Anatomy & Physiology

                somatostatin, hypoglycemia, glucagon secretion, islet α-cell, diabetes

                Comments

                Comment on this article