29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chronic Adaptations to Eccentric Training: A Systematic Review.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resistance training is an integral component of physical preparation for athletes. A growing body of evidence indicates that eccentric strength training methods induce novel stimuli for neuromuscular adaptations.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones.

          Thirty-two untrained men [mean (SD) age 22.5 (5.8) years, height 178.3 (7.2) cm, body mass 77.8 (11.9) kg] participated in an 8-week progressive resistance-training program to investigate the "strength-endurance continuum". Subjects were divided into four groups: a low repetition group (Low Rep, n = 9) performing 3-5 repetitions maximum (RM) for four sets of each exercise with 3 min rest between sets and exercises, an intermediate repetition group (Int Rep, n = 11) performing 9-11 RM for three sets with 2 min rest, a high repetition group (High Rep, n = 7) performing 20-28 RM for two sets with 1 min rest, and a non-exercising control group (Con, n = 5). Three exercises (leg press, squat, and knee extension) were performed 2 days/week for the first 4 weeks and 3 days/week for the final 4 weeks. Maximal strength [one repetition maximum, 1RM), local muscular endurance (maximal number of repetitions performed with 60% of 1RM), and various cardiorespiratory parameters (e.g., maximum oxygen consumption, pulmonary ventilation, maximal aerobic power, time to exhaustion) were assessed at the beginning and end of the study. In addition, pre- and post-training muscle biopsy samples were analyzed for fiber-type composition, cross-sectional area, myosin heavy chain (MHC) content, and capillarization. Maximal strength improved significantly more for the Low Rep group compared to the other training groups, and the maximal number of repetitions at 60% 1RM improved the most for the High Rep group. In addition, maximal aerobic power and time to exhaustion significantly increased at the end of the study for only the High Rep group. All three major fiber types (types I, IIA, and IIB) hypertrophied for the Low Rep and Int Rep groups, whereas no significant increases were demonstrated for either the High Rep or Con groups. However, the percentage of type IIB fibers decreased, with a concomitant increase in IIAB fibers for all three resistance-trained groups. These fiber-type conversions were supported by a significant decrease in MHCIIb accompanied by a significant increase in MHCIIa. No significant changes in fiber-type composition were found in the control samples. Although all three training regimens resulted in similar fiber-type transformations (IIB to IIA), the low to intermediate repetition resistance-training programs induced a greater hypertrophic effect compared to the high repetition regimen. The High Rep group, however, appeared better adapted for submaximal, prolonged contractions, with significant increases after training in aerobic power and time to exhaustion. Thus, low and intermediate RM training appears to induce similar muscular adaptations, at least after short-term training in previously untrained subjects. Overall, however, these data demonstrate that both physical performance and the associated physiological adaptations are linked to the intensity and number of repetitions performed, and thus lend support to the "strength-endurance continuum".
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis.

            The aim of this systematic review was to determine if eccentric exercise is superior to concentric exercise in stimulating gains in muscle strength and mass. Meta-analyses were performed for comparisons between eccentric and concentric training as means to improve muscle strength and mass. In order to determine the importance of different parameters of training, subgroup analyses of intensity of exercise, velocity of movement and mode of contraction were also performed. Twenty randomised controlled trials studies met the inclusion criteria. Meta-analyses showed that when eccentric exercise was performed at higher intensities compared with concentric training, total strength and eccentric strength increased more significantly. However, compared with concentric training, strength gains after eccentric training appeared more specific in terms of velocity and mode of contraction. Eccentric training performed at high intensities was shown to be more effective in promoting increases in muscle mass measured as muscle girth. In addition, eccentric training also showed a trend towards increased muscle cross-sectional area measured with magnetic resonance imaging or computerised tomography. Subgroup analyses suggest that the superiority of eccentric training to increase muscle strength and mass appears to be related to the higher loads developed during eccentric contractions. The specialised neural pattern of eccentric actions possibly explains the high specificity of strength gains after eccentric training. Further research is required to investigate the underlying mechanisms of this specificity and its functional significance in terms of transferability of strength gains to more complex human movements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Developing maximal neuromuscular power: Part 1--biological basis of maximal power production.

              This series of reviews focuses on the most important neuromuscular function in many sport performances, the ability to generate maximal muscular power. Part 1 focuses on the factors that affect maximal power production, while part 2, which will follow in a forthcoming edition of Sports Medicine, explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability of the neuromuscular system to generate maximal power is affected by a range of interrelated factors. Maximal muscular power is defined and limited by the force-velocity relationship and affected by the length-tension relationship. The ability to generate maximal power is influenced by the type of muscle action involved and, in particular, the time available to develop force, storage and utilization of elastic energy, interactions of contractile and elastic elements, potentiation of contractile and elastic filaments as well as stretch reflexes. Furthermore, maximal power production is influenced by morphological factors including fibre type contribution to whole muscle area, muscle architectural features and tendon properties as well as neural factors including motor unit recruitment, firing frequency, synchronization and inter-muscular coordination. In addition, acute changes in the muscle environment (i.e. alterations resulting from fatigue, changes in hormone milieu and muscle temperature) impact the ability to generate maximal power. Resistance training has been shown to impact each of these neuromuscular factors in quite specific ways. Therefore, an understanding of the biological basis of maximal power production is essential for developing training programmes that effectively enhance maximal power production in the human.
                Bookmark

                Author and article information

                Journal
                Sports Med
                Sports medicine (Auckland, N.Z.)
                Springer Nature
                1179-2035
                0112-1642
                May 2017
                : 47
                : 5
                Affiliations
                [1 ] Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. jamie.douglas@hpsnz.org.nz.
                [2 ] High Performance Sport New Zealand (HPSNZ), AUT Millennium, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand. jamie.douglas@hpsnz.org.nz.
                [3 ] Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
                [4 ] Queensland Academy of Sport, Nathan, QLD, Australia.
                [5 ] High Performance Sport New Zealand (HPSNZ), AUT Millennium, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand.
                [6 ] School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.
                Article
                10.1007/s40279-016-0628-4
                10.1007/s40279-016-0628-4
                27647157
                8c950f36-27a0-41e5-8db8-5dfbf66730e4
                History

                Comments

                Comment on this article