22
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Distinct Patterns of Hippocampal and Neocortical Evolution in Primates

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Because of the central role of the hippocampus in representing spatial and temporal details of experience, comparative studies of its volume and structure are relevant to understanding the evolution of representational memory across species. The hippocampal formation, however, is organized into separate anatomical subregions with distinct functions, and little is known about the evolutionary diversification of these subregions. We investigate relative volumetric changes in hippocampal subregions across a large sample of primate species. We then compare the evolution of the hippocampal formation to the neocortex. Results across hippocampal subregions indicate that, compared to strepsirrhines, the anthropoid lineage displays a decrease in relative CA3, fascia dentata, subiculum, and rhinal cortex volume in tandem with an increase in relative neocortical volume. These findings indicate that hippocampal function in anthropoids might be substantially augmented by the executive decision-making functions of the neocortex. Humans are found to have a unique cerebral organization combining increased relative CA3, subiculum, and rhinal cortex with increased relative neocortical volumes, suggesting that these regions may play a role in behaviors that are uniquely specialized in humans.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Memory, navigation and theta rhythm in the hippocampal-entorhinal system.

          Theories on the functions of the hippocampal system are based largely on two fundamental discoveries: the amnestic consequences of removing the hippocampus and associated structures in the famous patient H.M. and the observation that spiking activity of hippocampal neurons is associated with the spatial position of the rat. In the footsteps of these discoveries, many attempts were made to reconcile these seemingly disparate functions. Here we propose that mechanisms of memory and planning have evolved from mechanisms of navigation in the physical world and hypothesize that the neuronal algorithms underlying navigation in real and mental space are fundamentally the same. We review experimental data in support of this hypothesis and discuss how specific firing patterns and oscillatory dynamics in the entorhinal cortex and hippocampus can support both navigation and memory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Remembering the past to imagine the future: the prospective brain.

            A rapidly growing number of recent studies show that imagining the future depends on much of the same neural machinery that is needed for remembering the past. These findings have led to the concept of the prospective brain; an idea that a crucial function of the brain is to use stored information to imagine, simulate and predict possible future events. We suggest that processes such as memory can be productively re-conceptualized in light of this idea.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pattern separation in the dentate gyrus and CA3 of the hippocampus.

              Theoretical models have long pointed to the dentate gyrus as a possible source of neuronal pattern separation. In agreement with predictions from these models, we show that minimal changes in the shape of the environment in which rats are exploring can substantially alter correlated activity patterns among place-modulated granule cells in the dentate gyrus. When the environments are made more different, new cell populations are recruited in CA3 but not in the dentate gyrus. These results imply a dual mechanism for pattern separation in which signals from the entorhinal cortex can be decorrelated both by changes in coincidence patterns in the dentate gyrus and by recruitment of nonoverlapping cell assemblies in CA3.
                Bookmark

                Author and article information

                Journal
                BBE
                Brain Behav Evol
                10.1159/issn.0006-8977
                Brain, Behavior and Evolution
                S. Karger AG
                0006-8977
                1421-9743
                2019
                November 2019
                09 July 2019
                : 93
                : 4
                : 171-181
                Affiliations
                [_a] aInterdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
                [_b] bDepartment of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
                [_c] cDepartment of Anthropology, Stony Brook University, Stony Brook, New York, USA
                Author notes
                *David R. Vanier, Stony Brook University, SBS Building 516N, Stony Brook, NY 11794 (USA), E-Mail david.vanier@stonybrook.edu
                Article
                500625 Brain Behav Evol 2019;93:171–181
                10.1159/000500625
                31288220
                8c95ac50-31ca-4d08-ae36-0817ccf176c5
                © 2019 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 29 October 2018
                : 28 April 2019
                Page count
                Figures: 2, Pages: 11
                Categories
                Original Paper

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Hippocampus,Neocortex,Mental representation,Navigation,Mental maps

                Comments

                Comment on this article