Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development and analysis of alpha 1-antitrypsin neoglycoproteins: the impact of additional N-glycosylation sites on serum half-life.

      Molecular Pharmaceutics

      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Therapeutic efficacy of glycoproteins is affected by many factors, including molecular size and net charge; both are influenced by the presence and composition of glycan structures. Human alpha 1-antitrypsin (A1AT) was cloned and expressed in human embryonic kidney cells (HEK293) that are capable of mammalian glycosylation. Utilizing PCR-based site-directed mutagenesis, new A1AT variants were created with single, double, or triple additional N-glycosylation sites to the three naturally occurring N-glycosylation sites. Because of the supplementary N-glycans, the A1AT variants exhibited an increased molecular weight. Retention of inhibitory activity was shown via trypsin inhibitory assay. The A1AT variants were treated with PNGase F, and the resulting N-glycans were analyzed by MALDI-TOF mass spectrometry. The N-glycan profile of the recombinant A1AT variants was mostly composed of monofucosylated bi-, tri-, and tetraantennary complex-type N-glycans, with a tendency toward higher antennary structures compared to the wild-type. The relevance of N-glycosylation in A1AT for the circulatory serum half-life was demonstrated in CD1 mice. The A1AT neoglycoprotein with an additional N-glycosylation site at position N123 exhibited a 62% increase in serum half-life. Additionally, using a two-compartment model, the A1AT variants exhibited increased α-phase values, especially N123 (223%) and N201 (255%). The results suggest the recombinant A1AT neoglycoprotein as a serious alternative to A1AT derived from human plasma.

          Related collections

          Author and article information

          Journal
          10.1021/mp400043r
          23668542

          Comments

          Comment on this article