31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vitamin D and inflammatory diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Beyond its critical function in calcium homeostasis, vitamin D has recently been found to play an important role in the modulation of the immune/inflammation system via regulating the production of inflammatory cytokines and inhibiting the proliferation of proinflammatory cells, both of which are crucial for the pathogenesis of inflammatory diseases. Several studies have associated lower vitamin D status with increased risk and unfavorable outcome of acute infections. Vitamin D supplementation bolsters clinical responses to acute infection. Moreover, chronic inflammatory diseases, such as atherosclerosis-related cardiovascular disease, asthma, inflammatory bowel disease, chronic kidney disease, nonalcoholic fatty liver disease, and others, tend to have lower vitamin D status, which may play a pleiotropic role in the pathogenesis of the diseases. In this article, we review recent epidemiological and interventional studies of vitamin D in various inflammatory diseases. The potential mechanisms of vitamin D in regulating immune/inflammatory responses in inflammatory diseases are also discussed.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality.

          In cross-sectional studies, low serum levels of 25-hydroxyvitamin D are associated with higher prevalence of cardiovascular risk factors and disease. This study aimed to determine whether endogenous 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels are related to all-cause and cardiovascular mortality. Prospective cohort study of 3258 consecutive male and female patients (mean [SD] age, 62 [10] years) scheduled for coronary angiography at a single tertiary center. We formed quartiles according to 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels within each month of blood drawings. The main outcome measures were all-cause and cardiovascular deaths. During a median follow-up period of 7.7 years, 737 patients (22.6%) died, including 463 deaths from cardiovascular causes. Multivariate-adjusted hazard ratios (HRs) for patients in the lower two 25-hydroxyvitamin D quartiles (median, 7.6 and 13.3 ng/mL [to convert 25-hydroxyvitamin D levels to nanomoles per liter, multiply by 2.496]) were higher for all-cause mortality (HR, 2.08; 95% confidence interval [CI], 1.60-2.70; and HR, 1.53; 95% CI, 1.17-2.01; respectively) and for cardiovascular mortality (HR, 2.22; 95% CI, 1.57-3.13; and HR, 1.82; 95% CI, 1.29-2.58; respectively) compared with patients in the highest 25-hydroxyvitamin D quartile (median, 28.4 ng/mL). Similar results were obtained for patients in the lowest 1,25-dihydroxyvitamin D quartile. These effects were independent of coronary artery disease, physical activity level, Charlson Comorbidity Index, variables of mineral metabolism, and New York Heart Association functional class. Low 25-hydroxyvitamin D levels were significantly correlated with variables of inflammation (C-reactive protein and interleukin 6 levels), oxidative burden (serum phospholipid and glutathione levels), and cell adhesion (vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 levels). Low 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels are independently associated with all-cause and cardiovascular mortality. A causal relationship has yet to be proved by intervention trials using vitamin D.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Clinical practice. Vitamin D insufficiency.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier.

              Emerging evidence supports a pathological link between vitamin D deficiency and the risk of inflammatory bowel disease (IBD). To explore the mechanism we used the dextran sulfate sodium (DSS)-induced colitis model to investigate the role of the vitamin D receptor (VDR) in mucosal barrier homeostasis. While VDR(+/+) mice were mostly resistant to 2.5% DSS, VDR(-/-) mice developed severe diarrhea, rectal bleeding, and marked body weight loss, leading to death in 2 wk. Histological examination revealed extensive ulceration and impaired wound healing in the colonic epithelium of DSS-treated VDR(-/-) mice. Severe ulceration in VDR(-/-) mice was preceded by a greater loss of intestinal transepithelial electric resistance (TER) compared with VDR(+/+) mice. Confocal and electron microscopy (EM) revealed severe disruption in epithelial junctions in VDR(-/-) mice after 3-day DSS treatment. Therefore, VDR(-/-) mice were much more susceptible to DSS-induced mucosal injury than VDR(+/+) mice. In cell cultures, 1,25-dihydroxy-vitamin D(3) [1,25(OH)(2)D(3)] markedly enhanced tight junctions formed by Caco-2 monolayers by increasing junction protein expression and TER and preserved the structural integrity of tight junctions in the presence of DSS. VDR knockdown with small interfering (si)RNA reduced the junction proteins and TER in Caco-2 monolayers. 1,25(OH)(2)D(3) can also stimulate epithelial cell migration in vitro. These observations suggest that VDR plays a critical role in mucosal barrier homeostasis by preserving the integrity of junction complexes and the healing capacity of the colonic epithelium. Therefore, vitamin D deficiency may compromise the mucosal barrier, leading to increased susceptibility to mucosal damage and increased risk of IBD.
                Bookmark

                Author and article information

                Journal
                J Inflamm Res
                J Inflamm Res
                Journal of Inflammation Research
                Dove Medical Press
                1178-7031
                2014
                29 May 2014
                : 7
                : 69-87
                Affiliations
                Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
                Author notes
                Correspondence: Devendra K Agrawal, Center for Clinical and Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA, Tel +1 402 280 2938, Fax +1 402 280 1421, Email dkagr@ 123456creighton.edu
                Article
                jir-7-069
                10.2147/JIR.S63898
                4070857
                24971027
                8c9ad6fb-a829-4a27-962b-45cfc9c690dd
                © 2014 Yin and Agrawal. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Immunology
                asthma,atherosclerosis,chronic kidney disease,inflammatory bowel disease
                Immunology
                asthma, atherosclerosis, chronic kidney disease, inflammatory bowel disease

                Comments

                Comment on this article