7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The importance of booster vaccination in the context of Omicron wave

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Omicron (B.1.1.529) was first detected in a sample collected in Botswana on November 11, 2021, and has rapidly replaced Delta as the dominant global variant given the robust transmissibility. Moreover, it displays a lower virulence than other variants. However, the pathogenicity of Omicron appears to be underestimated in view of the increasing levels of herd immunity through natural infection or vaccination. Additionally, the volume of hospitalizations and deaths increase in proportion to the number of cases due to the high transmissibility of Omicron. Therefore, vaccination remains an important public health priority. Notably, a series of important mutations in the Omicron spike protein, especially in the receptor-binding domain and N-terminal domain, appears to be associated with immune escape capacity, reducing the willingness of people to receive vaccines. Herein, we provide an in-depth discussion to assess the effectiveness of the second and third vaccination against Omicron variant. On the one hand, the two-dose vaccination program adopted by many countries is insufficient to prevent Omicron infection given the mutations correlated with immune escape and the decline in vaccine efficacy over time. On the other hand, booster dose significantly increases the protective efficacy against Omicron infection. Most importantly, heterologous third dose vaccination induces a more robust immune response than homologous booster dose. Therefore, under the special background of this pandemic, there is an urgent need to accelerate the third dose of vaccination, especially providing better booster vaccination strategies, to combat emerging Omicron variant.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant

          Background A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. Methods We used a test-negative case–control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer–BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. Results Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. Conclusions Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection

            Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage 1 . The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles 2 , epitope distribution 3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab 4 and cilgavimab 5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

              The SARS-CoV-2 Omicron BA.1 variant emerged in 2021 1 and has multiple mutations in its spike protein 2 . Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron’s evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                08 September 2022
                2022
                08 September 2022
                : 13
                : 977972
                Affiliations
                [1] Department of Physiology, Jining Medical University , Jining, China
                Author notes

                Edited by: Doan C. Nguyen, Emory University, United States

                Reviewed by: Li Zhang, National Institutes for Food and Drug Control, China; Natalie S. Haddad, Emory University, United States

                *Correspondence: Fei Chen, chenfei0336@ 123456163.com

                ‡ORCID: Fei Chen, orcid.org/0000-0002-2578-7159

                †These authors have contributed equally to this work and share first authorship

                This article was submitted to Vaccines and Molecular Therapeutics, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.977972
                9498215
                36159796
                8ca26600-1d47-48c7-85b6-f6e483855908
                Copyright © 2022 Wei, He, Wang, Bao, Leng and Chen

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 June 2022
                : 12 August 2022
                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 115, Pages: 15, Words: 6457
                Funding
                Funded by: Natural Science Foundation of Shandong Province , doi 10.13039/501100007129;
                Categories
                Immunology
                Review

                Immunology
                sars-cov-2,omicron,vaccine,booster,heterologous,homologous
                Immunology
                sars-cov-2, omicron, vaccine, booster, heterologous, homologous

                Comments

                Comment on this article