4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The First Egyptian Report Showing the Co-Existence of bla NDM-25, bla OXA-23, bla OXA-181, and bla GES-1 Among Carbapenem-Resistant K. pneumoniae Clinical Isolates Genotyped by BOX-PCR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objective

          The emergence of carbapenem-resistant K. pneumoniae (CRKP) continues to escalate and is alarming because of the emergence of pan drug-resistant strains. The objective of this study was to investigate the existence of 12 carbapenemase genes among CRKP clinical isolates.

          Methods

          Ninety-six Klebsiella spp. clinical isolates were collected. The isolates were identified phenotypically and genotypically. These isolates were screened for susceptibility to 24 different antibiotics. The modified Hodge test (MHT) and the Carba Nordmann/Poirel (NP) test were used to phenotypically screen carbapenem-resistant strains for carbapenemase production. Phenotypic characterization of carbapenemases was performed using the combined disk synergy test (CDST). Additionally, the presence of 12 carbapenemase genes in CRKP isolates was investigated. The DNA sequence of bla NDM and bla GES genes was determined. The BOX-PCR technique was used to determine the clonal relationship between CRKP isolates.

          Results

          All carbapenem-resistant isolates were related to K. pneumoniae. Susceptibility testing showed that 19.79% (19/96) of the collected isolates were carbapenem-resistant. Of the CRKP isolates, 68.42% (13/19) tested positive for the MHT and Carba NP test. CDST showed that 42.11% (8/19), 63.16% (12/19), 47.37% (9/19), and 73.68% (14/19) of the CRKP isolates tested positive for the inhibitory effect of clavulanic acid, sulbactam, phenylboronic acid, and tazobactam, respectively, while 84.21% (16/19) and 68.42% (13/16) tested positive for the inhibitory effect of EDTA and mercaptopropionic acid, respectively. It was found that 10.53% (2/19) of the isolates tested positive for the inhibitory effect of sodium chloride. Molecular investigation of carbapenemases showed that 26.32% (5/19), 73.68% (14/19), 21.05% (4/19), 10.53% (2/19), and 5.26% (1/19) of the isolates tested positive for bla NDM, bla OXA-48, bla OXA-181, bla OXA-51, and bla OXA-23, respectively. None of the isolates tested positive for bla OXA-40 and bla OXA-58. Two allelic variants of bla NDM ( bla NDM-1 and bla NDM-25) were detected. BOX-PCR revealed high clonal relatedness between CRKP isolates.

          Conclusion

          MHT was more sensitive than Carba NP test for evaluating carbapenemase production and class D carbapenemase genes were the most prevalent of the 12 carbapenemase genes that were evaluated.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          OXA β-lactamases.

          The OXA β-lactamases were among the earliest β-lactamases detected; however, these molecular class D β-lactamases were originally relatively rare and always plasmid mediated. They had a substrate profile limited to the penicillins, but some became able to confer resistance to cephalosporins. From the 1980s onwards, isolates of Acinetobacter baumannii that were resistant to the carbapenems emerged, manifested by plasmid-encoded β-lactamases (OXA-23, OXA-40, and OXA-58) categorized as OXA enzymes because of their sequence similarity to earlier OXA β-lactamases. It was soon found that every A. baumannii strain possessed a chromosomally encoded OXA β-lactamase (OXA-51-like), some of which could confer resistance to carbapenems when the genetic environment around the gene promoted its expression. Similarly, Acinetobacter species closely related to A. baumannii also possessed their own chromosomally encoded OXA β-lactamases; some could be transferred to A. baumannii, and they formed the basis of transferable carbapenem resistance in this species. In some cases, the carbapenem-resistant OXA β-lactamases (OXA-48) have migrated into the Enterobacteriaceae and are becoming a significant cause of carbapenem resistance. The emergence of OXA enzymes that can confer resistance to carbapenems, particularly in A. baumannii, has transformed these β-lactamases from a minor hindrance into a major problem set to demote the clinical efficacy of the carbapenems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Carbapenem Resistance: A Review

            Carbapenem resistance is a major and an on-going public health problem globally. It occurs mainly among Gram-negative pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii, and may be intrinsic or mediated by transferable carbapenemase-encoding genes. This type of resistance genes are already widespread in certain parts of the world, particularly Europe, Asia and South America, while the situation in other places such as sub-Saharan Africa is not well documented. In this paper, we provide an in-depth review of carbapenem resistance providing up-to-date information on the subject.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbapenem resistance: overview of the problem and future perspectives.

              Carbapenem resistance, mainly among Gram-negative pathogens, is an ongoing public-health problem of global dimensions. This type of antimicrobial resistance, especially when mediated by transferable carbapenemase-encoding genes, is spreading rapidly causing serious outbreaks and dramatically limiting treatment options. In this article, important key points related to carbapenem resistance are reviewed and future perspectives are discussed.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                IDR
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                29 April 2020
                2020
                : 13
                : 1237-1250
                Affiliations
                [1 ]Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University , Taif, Kingdom of Saudi Arabia
                [2 ]Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology , 6th of October City, Egypt
                [3 ]King Fahad Armed Forces Hospital , Jeddah, Kingdom of Saudi Arabia
                [4 ]Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology , Gamasa, Egypt
                Author notes
                Correspondence: Mohamed F El-Badawy Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University , Kingdom of Saudi ArabiaTel +20-103-205-9964 Email m.elbadawy@tu.edu.sa
                Author information
                http://orcid.org/0000-0002-5896-3067
                http://orcid.org/0000-0002-8719-2476
                Article
                244064
                10.2147/IDR.S244064
                7196799
                32425561
                8ca46512-6d20-4396-b018-51a6886fefff
                © 2020 El-Badawy et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 29 December 2019
                : 04 April 2020
                Page count
                Figures: 4, Tables: 5, References: 57, Pages: 14
                Categories
                Original Research

                Infectious disease & Microbiology
                carbapenemases,crkp,box-pcr,blandm-25,mht,cdst
                Infectious disease & Microbiology
                carbapenemases, crkp, box-pcr, blandm-25, mht, cdst

                Comments

                Comment on this article