7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Advancement in biosensors for inflammatory biomarkers of SARS-CoV-2 during 2019–2020

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          COVID-19 pandemic has affected everyone throughout the world and has resulted in the loss of lives of many souls. Due to the restless efforts of the researchers working hard day and night, some success has been gained for the detection of virus. As on date, the traditional polymerized chain reactions (PCR), lateral flow devices (LFID) and enzyme linked immunosorbent assays (ELISA) are being adapted for the detection of this deadly virus. However, a more exciting avenue is the detection of certain biomarkers associated with this viral infection which can be done by simply re-purposing our existing infrastructure. SARS-CoV-2 viral infection triggers various inflammatory, biochemical and hematological biomarkers. Because of the infection route that the virus follows, it causes significant inflammatory response. As a result, various inflammatory markers have been reported to be closely associated with this infection such as C-reactive proteins, interleukin-6, procalcitonin and ferritin. Sensing of these biomarkers can simultaneously help in understanding the illness level of the affected patient. Also, by monitoring these biomarkers, we can predict the viral infections in those patients who have low SARS-CoV-2 RNA and hence are missed by traditional tests. This can give more targets to the researchers and scientists, working in the area of drug development and provide better prognosis. In this review, we propose to highlight the conventional as well as the non-conventional methods for the detection of these inflammatory biomarkers which can act as a single platform of knowledge for the researchers and scientists working for the treatment of COVID-19.

          Highlights

          • Inflammatory, biochemical and hematological biomarkers triggered by SARS-CoV-2.

          • Inflammatory biomarkers include CRP, IL-6, PCT and ferritin.

          • Monitoring these help in understanding the illness level of the affected patient.

          • Review highlight the conventional as well as the non-conventional detection methods.

          • Biosensors are potential candidates for monitoring infections.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

          Summary Background In December, 2019, a pneumonia associated with the 2019 novel coronavirus (2019-nCoV) emerged in Wuhan, China. We aimed to further clarify the epidemiological and clinical characteristics of 2019-nCoV pneumonia. Methods In this retrospective, single-centre study, we included all confirmed cases of 2019-nCoV in Wuhan Jinyintan Hospital from Jan 1 to Jan 20, 2020. Cases were confirmed by real-time RT-PCR and were analysed for epidemiological, demographic, clinical, and radiological features and laboratory data. Outcomes were followed up until Jan 25, 2020. Findings Of the 99 patients with 2019-nCoV pneumonia, 49 (49%) had a history of exposure to the Huanan seafood market. The average age of the patients was 55·5 years (SD 13·1), including 67 men and 32 women. 2019-nCoV was detected in all patients by real-time RT-PCR. 50 (51%) patients had chronic diseases. Patients had clinical manifestations of fever (82 [83%] patients), cough (81 [82%] patients), shortness of breath (31 [31%] patients), muscle ache (11 [11%] patients), confusion (nine [9%] patients), headache (eight [8%] patients), sore throat (five [5%] patients), rhinorrhoea (four [4%] patients), chest pain (two [2%] patients), diarrhoea (two [2%] patients), and nausea and vomiting (one [1%] patient). According to imaging examination, 74 (75%) patients showed bilateral pneumonia, 14 (14%) patients showed multiple mottling and ground-glass opacity, and one (1%) patient had pneumothorax. 17 (17%) patients developed acute respiratory distress syndrome and, among them, 11 (11%) patients worsened in a short period of time and died of multiple organ failure. Interpretation The 2019-nCoV infection was of clustering onset, is more likely to affect older males with comorbidities, and can result in severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In general, characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia. Further investigation is needed to explore the applicability of the MuLBSTA score in predicting the risk of mortality in 2019-nCoV infection. Funding National Key R&D Program of China.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cell entry mechanisms of SARS-CoV-2

            Significance A key to curbing SARS-CoV-2 is to understand how it enters cells. SARS-CoV-2 and SARS-CoV both use human ACE2 as entry receptor and human proteases as entry activators. Using biochemical and pseudovirus entry assays and SARS-CoV as a comparison, we have identified key cell entry mechanisms of SARS-CoV-2 that potentially contribute to the immune evasion, cell infectivity, and wide spread of the virus. This study also clarifies conflicting reports from recent studies on cell entry of SARS-CoV-2. Finally, by highlighting the potency and the evasiveness of SARS-CoV-2, the study provides insight into intervention strategies that target its cell entry mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pathogenesis and treatment of the `Cytokine Storm' in COVID-19

              Summary Cytokine storm is an excessive immune response to external stimuli. The pathogenesis of the cytokine storm is complex. The disease progresses rapidly, and the mortality is high. Certain evidence shows that, during the coronavirus disease 2019 (COVID-19) epidemic, the severe deterioration of some patients has been closely related to the cytokine storm in their bodies. This article reviews the occurrence mechanism and treatment strategies of the COVID-19 virus-induced inflammatory storm in attempt to provide valuable medication guidance for clinical treatment.
                Bookmark

                Author and article information

                Journal
                Biosens Bioelectron
                Biosens Bioelectron
                Biosensors & Bioelectronics
                Elsevier B.V.
                0956-5663
                1873-4235
                9 October 2020
                1 January 2021
                9 October 2020
                : 171
                : 112703
                Affiliations
                [a ]CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India
                [b ]Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
                Author notes
                []Corresponding author. CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India.
                [∗∗ ]Corresponding author. CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India.
                Article
                S0956-5663(20)30692-8 112703
                10.1016/j.bios.2020.112703
                7544635
                33049563
                8caa52bf-be3c-4ca9-abaf-a7ea1eef0728
                © 2020 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 30 July 2020
                : 3 October 2020
                : 6 October 2020
                Categories
                Article

                Biomedical engineering
                sars-cov-2,inflammatory markers,c-reactive proteins,interleukin-6,procalcitonin,ferritin,biosensors

                Comments

                Comment on this article