2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Floquet-Bloch Theory for Nonperturbative Response to a Static Drive

      Preprint
      , , ,

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We develop the Floquet-Bloch theory of noninteracting fermions on a periodic lattice in the presence of a constant electric field. As long as the field lies along a reciprocal lattice vector, time periodicity of the Bloch Hamiltonian is inherited from the evolution of momentum in the Brillouin zone. The corresponding Floquet quasienergies yield the Wannier-Stark ladder with interband couplings included to all orders. These results are compared to perturbative results where the lowest-order interband correction gives the field-induced polarization shift in terms of the electric susceptibility. Additionally, we investigate electronic transport by coupling the system to a bath within the Floquet-Keldysh formalism. We then study the breakdown of the band-projected theory from the onset of interband contributions and Zener resonances in the band-resolved currents. In particular, we consider the transverse quantum-geometric response in two spatial dimensions due to the Berry curvature. In the strong-field regime, the semiclassical theory predicts a plateau of the geometric response as a function of field strength. Here, we scrutinize the conditions under which the semiclassical results continue to hold in the quantum theory.

          Related collections

          Author and article information

          Journal
          30 January 2024
          Article
          2401.17368
          8caae0f8-8ebb-465e-b903-dc22aa40a050

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          15 + 8 pages, 12 + 1 figures
          cond-mat.mes-hall

          Nanophysics
          Nanophysics

          Comments

          Comment on this article

          Related Documents Log