Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Exploring mechanisms of excess mortality with early fluid resuscitation: insights from the FEAST trial

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Background

      Early rapid fluid resuscitation (boluses) in African children with severe febrile illnesses increases the 48-hour mortality by 3.3% compared with controls (no bolus). We explored the effect of boluses on 48-hour all-cause mortality by clinical presentation at enrolment, hemodynamic changes over the first hour, and on different modes of death, according to terminal clinical events. We hypothesize that boluses may cause excess deaths from neurological or respiratory events relating to fluid overload.

      Methods

      Pre-defined presentation syndromes (PS; severe acidosis or severe shock, respiratory, neurological) and predominant terminal clinical events (cardiovascular collapse, respiratory, neurological) were described by randomized arm (bolus versus control) in 3,141 severely ill febrile children with shock enrolled in the Fluid Expansion as Supportive Therapy (FEAST) trial. Landmark analyses were used to compare early mortality in treatment groups, conditional on changes in shock and hypoxia parameters. Competing risks methods were used to estimate cumulative incidence curves and sub-hazard ratios to compare treatment groups in terms of terminal clinical events.

      Results

      Of 2,396 out of 3,141 (76%) classifiable participants, 1,647 (69%) had a severe metabolic acidosis or severe shock PS, 625 (26%) had a respiratory PS and 976 (41%) had a neurological PS, either alone or in combination. Mortality was greatest among children fulfilling criteria for all three PS (28% bolus, 21% control) and lowest for lone respiratory (2% bolus, 5% control) or neurological (3% bolus, 0% control) presentations. Excess mortality in bolus arms versus control was apparent for all three PS, including all their component features. By one hour, shock had resolved (responders) more frequently in bolus versus control groups (43% versus 32%, P <0.001), but excess mortality with boluses was evident in responders (relative risk 1.98, 95% confidence interval 0.94 to 4.17, P = 0.06) and 'non-responders' (relative risk 1.67, 95% confidence interval 1.23 to 2.28, P = 0.001), with no evidence of heterogeneity ( P = 0.68). The major difference between bolus and control arms was the higher proportion of cardiogenic or shock terminal clinical events in bolus arms (n = 123; 4.6% versus 2.6%, P = 0.008) rather than respiratory (n = 61; 2.2% versus 1.3%, P = 0.09) or neurological (n = 63, 2.1% versus 1.8%, P = 0.6) terminal clinical events.

      Conclusions

      Excess mortality from boluses occurred in all subgroups of children. Contrary to expectation, cardiovascular collapse rather than fluid overload appeared to contribute most to excess deaths with rapid fluid resuscitation. These results should prompt a re-evaluation of evidence on fluid resuscitation for shock and a re-appraisal of the rate, composition and volume of resuscitation fluids.

      Trial registration

      ISRCTN69856593

      Related collections

      Most cited references 35

      • Record: found
      • Abstract: found
      • Article: not found

      Early goal-directed therapy in the treatment of severe sepsis and septic shock.

      Goal-directed therapy has been used for severe sepsis and septic shock in the intensive care unit. This approach involves adjustments of cardiac preload, afterload, and contractility to balance oxygen delivery with oxygen demand. The purpose of this study was to evaluate the efficacy of early goal-directed therapy before admission to the intensive care unit. We randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit. Clinicians who subsequently assumed the care of the patients were blinded to the treatment assignment. In-hospital mortality (the primary efficacy outcome), end points with respect to resuscitation, and Acute Physiology and Chronic Health Evaluation (APACHE II) scores were obtained serially for 72 hours and compared between the study groups. Of the 263 enrolled patients, 130 were randomly assigned to early goal-directed therapy and 133 to standard therapy; there were no significant differences between the groups with respect to base-line characteristics. In-hospital mortality was 30.5 percent in the group assigned to early goal-directed therapy, as compared with 46.5 percent in the group assigned to standard therapy (P = 0.009). During the interval from 7 to 72 hours, the patients assigned to early goal-directed therapy had a significantly higher mean (+/-SD) central venous oxygen saturation (70.4+/-10.7 percent vs. 65.3+/-11.4 percent), a lower lactate concentration (3.0+/-4.4 vs. 3.9+/-4.4 mmol per liter), a lower base deficit (2.0+/-6.6 vs. 5.1+/-6.7 mmol per liter), and a higher pH (7.40+/-0.12 vs. 7.36+/-0.12) than the patients assigned to standard therapy (P < or = 0.02 for all comparisons). During the same period, mean APACHE II scores were significantly lower, indicating less severe organ dysfunction, in the patients assigned to early goal-directed therapy than in those assigned to standard therapy (13.0+/-6.3 vs. 15.9+/-6.4, P < 0.001). Early goal-directed therapy provides significant benefits with respect to outcome in patients with severe sepsis and septic shock.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        A Proportional Hazards Model for the Subdistribution of a Competing Risk

          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

          Objective To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004. Design Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. Methods We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation [1] indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations [2] indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. Results Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7–10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure ≥ 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7–9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). Conclusion There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Wellcome Trust Centre for Clinical Tropical Medicine, Department of Paediatrics, Faculty of Medicine, St Marys Campus, Norfolk Place, Imperial College, London W2 1PG, UK
            [2 ]Kilifi Clinical Trials Facility, KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya
            [3 ]Medical Research Council (MRC) Clinical Trials Unit, Aviation House, 125 Kingsway London, WC2B 6NH, UK
            [4 ]Department of Paediatrics University Hospital of Wales Heath Park, Cardiff, CF14 4XW, Wales, UK
            [5 ]Department of Paediatrics, Mulago Hospital, PO Box 7070, Makerere University, Kampala, Uganda
            [6 ]Department of Paediatrics, Mbale Regional Referral Hospital Pallisa Road Zone, PO Box 921, Mbale, Uganda
            [7 ]Department of Paediatrics, Soroti Regional Referral Hospital, PO Box 289, Soroti, Uganda
            [8 ]Department of Paediatrics, St Mary's Hospital, PO Box 180, Lacor, Uganda
            [9 ]Department of Paediatrics Joint Malaria Programme, Teule Hospital, PO Box 81, Muheza, Tanzania
            [10 ]Joint Malaria Programme, PO Box 2228, KCMC, Moshi, Tanzania
            Contributors
            Journal
            BMC Med
            BMC Med
            BMC Medicine
            BioMed Central
            1741-7015
            2013
            14 March 2013
            : 11
            : 68
            23496872
            3599745
            1741-7015-11-68
            10.1186/1741-7015-11-68
            Copyright ©2013 Maitland et al; licensee BioMed Central Ltd.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Research Article

            Comments

            Comment on this article