11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The once‐daily human glucagon‐like peptide‐1 analog, liraglutide, improves β‐cell function in Japanese patients with type 2 diabetes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims/Introduction:  β‐cell function was evaluated by homeostasis model assessment of β‐cell function (HOMA‐B) index, proinsulin:insulin and proinsulin:C‐peptide ratios in adult, Japanese type 2 diabetes patients receiving liraglutide.

          Materials and Methods:  Data from two randomized, controlled clinical trials (A and B) including 664 Japanese type 2 diabetes patients (mean values: glycated hemoglobin [HbA 1c] 8.61–9.32%; body mass index [BMI] 24.4–25.3 kg/m 2) were analyzed. In two 24‐week trials, patients received liraglutide 0.9 mg ( n = 268) or glibenclamide 2.5 mg ( n = 132; trial A), or liraglutide 0.6, 0.9 mg ( n = 176) or placebo ( n = 88) added to previous sulfonylurea therapy (trial B).

          Results:  Liraglutide was associated with improved glycemic control vs sulfonylurea monotherapy or placebo. In liraglutide‐treated groups in trials A and B, area under the curve (AUC) insulin 0–3 h was improved ( P < 0.001 for all) and the AUC insulin 0–3 h:AUC glucose 0–3 h ratio was increased (estimated treatment difference [liraglutide–comparator] 0.058 [0.036, 0.079]). HOMA‐B significantly increased with liraglutide relative to comparator in trial B ( P < 0.05), but not in trial A. The reduction in fasting proinsulin:insulin ratio was 50% greater than in comparator groups.

          Conclusions:  In Japanese type 2 diabetes patients, liraglutide was associated with effective glycemic control, restoration of prandial insulin response and indications of improved β‐cell function. This trial was registered with Clinicaltrials.gov (trial A: no. NCT00393718/JapicCTI‐060328 and trial B: no. NCT00395746/JapicCTI‐060324). (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00193.x, 2012)

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial.

          New treatments for type 2 diabetes mellitus are needed to retain insulin-glucose coupling and lower the risk of weight gain and hypoglycaemia. We aimed to investigate the safety and efficacy of liraglutide as monotherapy for this disorder. In a double-blind, double-dummy, active-control, parallel-group study, 746 patients with early type 2 diabetes were randomly assigned to once daily liraglutide (1.2 mg [n=251] or 1.8 mg [n=247]) or glimepiride 8 mg (n=248) for 52 weeks. The primary outcome was change in proportion of glycosylated haemoglobin (HbA(1c)). Analysis was done by intention-to-treat. This trial is registered with ClinicalTrials.gov, number NTC00294723. At 52 weeks, HbA(1c) decreased by 0.51% (SD 1.20%) with glimepiride, compared with 0.84% (1.23%) with liraglutide 1.2 mg (difference -0.33%; 95% CI -0.53 to -0.13, p=0.0014) and 1.14% (1.24%) with liraglutide 1.8 mg (-0.62; -0.83 to -0.42, p<0.0001). Five patients in the liraglutide 1.2 mg, and one in 1.8 mg groups discontinued treatment because of vomiting, whereas none in the glimepiride group did so. Liraglutide is safe and effective as initial pharmacological therapy for type 2 diabetes mellitus and leads to greater reductions in HbA(1c), weight, hypoglycaemia, and blood pressure than does glimepiride.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications.

            The hyperglycemic activity of pancreatic extracts was encountered some 80 yr ago during efforts to optimize methods for the purification of insulin. The hyperglycemic substance was named "glucagon," and it was subsequently determined that glucagon is a 29-amino acid peptide synthesized and released from pancreatic alpha-cells. This article begins with a brief overview of the discovery of glucagon and the contributions that somatostatin and a sensitive and selective assay for pancreatic (vs. gut) glucagon made to understanding the physiological and pathophysiological roles of glucagon. Studies utilizing these tools to establish the function of glucagon in normal nutrient homeostasis and to document a relative glucagon excess in type 2 diabetes mellitus (T2DM) and precursors thereof are then discussed. The evidence that glucagon excess contributes to the development and maintenance of fasting hyperglycemia and that failure to suppress glucagon secretion contributes to postprandial hyperglycemia is then reviewed. Although key human studies are emphasized, salient animal studies highlighting the importance of glucagon in normal and defective glucoregulation are also described. The past eight decades of research in this area have led to development of new therapeutic approaches to treating T2DM that have been shown to, or are expected to, improve glycemic control in patients with T2DM in part by improving alpha-cell function or by blocking glucagon action. Accordingly, this review ends with a discussion of the status and therapeutic potential of glucagon receptor antagonists, alpha-cell selective somatostatin agonists, glucagon-like peptide-1 agonists, and dipeptidyl peptidase-IV inhibitors. Our overall conclusions are that there is considerable evidence that relative hyperglucagonemia contributes to fasting and postprandial hyperglycemia in patients with T2DM, and there are several new and emerging pharmacotherapies that may improve glycemic control in part by ameliorating the hyperglycemic effects of this relative glucagon excess.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes.

              Glucagon-like peptide 1 (GLP-1) is potentially a very attractive agent for treating type 2 diabetes. We explored the effect of short-term (1 week) treatment with a GLP-1 derivative, liraglutide (NN2211), on 24-h dynamics in glycemia and circulating free fatty acids, islet cell hormone profiles, and gastric emptying during meals using acetaminophen. Furthermore, fasting endogenous glucose release and gluconeogenesis (3-(3)H-glucose infusion and (2)H(2)O ingestion, respectively) were determined, and aspects of pancreatic islet cell function were elucidated on the subsequent day using homeostasis model assessment and first- and second-phase insulin response during a hyperglycemic clamp (plasma glucose approximately 16 mmol/l), and, finally, on top of hyperglycemia, an arginine stimulation test was performed. For accomplishing this, 13 patients with type 2 diabetes were examined in a double-blind, placebo-controlled crossover design. Liraglutide (6 micro g/kg) was administered subcutaneously once daily. Liraglutide significantly reduced the 24-h area under the curve for glucose (P = 0.01) and glucagon (P = 0.04), whereas the area under the curve for circulating free fatty acids was unaltered. Twenty-four-hour insulin secretion rates as assessed by deconvolution of serum C-peptide concentrations were unchanged, indicating a relative increase. Gastric emptying was not influenced at the dose of liraglutide used. Fasting endogenous glucose release was decreased (P = 0.04) as a result of a reduced glycogenolysis (P = 0.01), whereas gluconeogenesis was unaltered. First-phase insulin response and the insulin response to an arginine stimulation test with the presence of hyperglycemia were markedly increased (P < 0.001), whereas the proinsulin/insulin ratio fell (P = 0.001). The disposition index (peak insulin concentration after intravenous bolus of glucose multiplied by insulin sensitivity as assessed by homeostasis model assessment) almost doubled during liraglutide treatment (P < 0.01). Both during hyperglycemia per se and after arginine exposure, the glucagon responses were reduced during liraglutide administration (P < 0.01 and P = 0.01). Thus, 1 week's treatment with a single daily dose of the GLP-1 derivative liraglutide, operating through several different mechanisms including an ameliorated pancreatic islet cell function in individuals with type 2 diabetes, improves glycemic control throughout 24 h of daily living, i.e., prandial and nocturnal periods. This study further emphasizes GLP-1 and its derivatives as a promising novel concept for treatment of type 2 diabetes.
                Bookmark

                Author and article information

                Journal
                J Diabetes Investig
                J Diabetes Investig
                10.1111/(ISSN)2040-1124
                JDI
                ST
                Journal of Diabetes Investigation
                Blackwell Publishing Ltd (Oxford, UK )
                2040-1116
                2040-1124
                06 February 2012
                20 August 2012
                : 3
                : 4 ( doiID: 10.1111/jdi.2012.3.issue-4 )
                : 388-395
                Affiliations
                [ 1 ]Kansai Electric Power Hospital, Osaka
                [ 2 ]Development Division, Novo Nordisk Pharma Ltd, Tokyo
                [ 3 ]Diabetes and Endocrine Division, Department of Medicine, Kawasaki Medical School, Okayama, Japan
                [ 4 ]Global Development, Novo Nordisk A/S, Søborg, Denmark
                Author notes
                [*] [* ] Per Clauson Tel.: +81‐90‐3910‐9829 Fax: +81‐3‐6266‐1811 
E‐mail address: pcl@ 123456novonordisk.com
                Article
                JDI193
                10.1111/j.2040-1124.2012.00193.x
                4019260
                8cb5567b-020f-4099-b962-1e1705bb7757
                © 2012 Asian Association for the Study of Diabetes and Blackwell Publishing Asia Pty Ltd
                History
                Page count
                Figures: 1, Tables: 3, Pages: 8
                Categories
                Articles
                Clinical Science and Care
                Original Article
                Custom metadata
                2.0
                August 2012
                Converter:WILEY_ML3GV2_TO_NLM version:3.9.3 mode:remove_FC converted:04.02.2014

                insulin‐secreting cells,liraglutide,type 2 diabetes

                Comments

                Comment on this article