16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Widespread genealogical nonmonophyly in species of Pinus subgenus Strobus.

      Systematic Biology
      Alleles, Genetic Markers, Genome, Plant, Introns, Phylogeny, Pinus, classification, genetics, Plant Proteins, chemistry, Recombination, Genetic, Sequence Alignment, Sequence Analysis, DNA

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phylogenetic relationships among Pinus species from subgenus Strobus remain unresolved despite combined efforts based on nrITS and cpDNA. To provide greater resolution among these taxa, a 900-bp intron from a late embryogenesis abundant (LEA)-like gene (IFG8612)was sequenced from 39 pine species, with two or more alleles representing 33 species. Nineteen of 33 species exhibited allelic nonmonphyly in the strict consensus tree, and 10 deviated significantly from allelic monophyly based on topology incongruence tests. Intraspecific nucleotide diversity ranged from 0.0 to 0.0211, and analysis of variance shows that nucleotide diversity was strongly associated (P < 0.0001)with the degree of species monophyly. Although species nonmonophyly complicates phylogenetic interpretations, this nuclear locus offers greater topological support than previously observed for cpDNA or nrITS. Lacking evidence for hybridization, recombination, or imperfect taxonomy, we feel that incomplete lineage sorting remains the best explanation for the polymorphisms shared among species. Depending on the species, coalescent expectations indicate that reciprocal monophyly will be more likely than paraphyly in 1.71 to 24.0 x 10(6) years, and that complete genome-wide coalescence in these species may require up to 76.3 x 10(6) years. The absence of allelic coalescence is a severe constraint in the application of phylogenetic methods in Pinus, and taxa sharing similar life history traits with Pinus are likely to show species nonmonophyly using nuclear markers.

          Related collections

          Author and article information

          Comments

          Comment on this article