Blog
About

28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A universal assortativity measure for network analysis

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Characterizing the connectivity tendency of a network is a fundamental problem in network science. The traditional and well-known assortativity coefficient is calculated on a per-network basis, which is of little use to partial connection tendency of a network. This paper proposes a universal assortativity coefficient(UAC), which is based on the unambiguous definition of each individual edge's contribution to the global assortativity coefficient (GAC). It is able to reveal the connection tendency of microscopic, mesoscopic, macroscopic structures and any given part of a network. Applying UAC to real world networks, we find that, contrary to the popular expectation, most networks (notably the AS-level Internet topology) have markedly more assortative edges/nodes than dissortaive ones despite their global dissortativity. Consequently, networks can be categorized along two dimensions--single global assortativity and local assortativity statistics. Detailed anatomy of the AS-level Internet topology further illustrates how UAC can be used to decipher the hidden patterns of connection tendencies on different scales.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          Collective dynamics of 'small-world' networks.

          Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Complex brain networks: graph theoretical analysis of structural and functional systems.

            Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The structure and function of complex networks

               M. Newman (2003)
              Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
                Bookmark

                Author and article information

                Journal
                1212.6456

                Comments

                Comment on this article