1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of Nrf2 and oxidative stress on fenofibrate-induced hepatocarcinogenesis in rats.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regional specific relationships between oxidative stress and the development of glutathione S-transferase placental form (GST-P)-positive or GST-P-negative lesions in rats, induced by fenofibrate (FF), a peroxisome proliferator, were examined using a two-stage hepatocarcinogenesis model in F344 rats. Animals were initiated with a single ip injection of 200 mg/kg N-diethylnitrosamine (DEN) and from 2 weeks later were fed a diet containing 3000 or 0 ppm FF for 28 weeks. Animals were subjected to a two-third partial hepatectomy at week 3 and sacrificed at week 28. The development of hepatocellular proliferative lesions, which were mainly attributed to GST-P-negative lesions, was significantly increased in the FF-treated groups. Immunohistochemically, GST-P-positive lesions were devoid of intracytoplasmic nuclear factor-erythroid 2-related factor 2 (Nrf2) expression, whereas GST-P-negative lesions expressed higher levels of cytoplasmic Nrf2. On the other hand, nuclear accumulation of Nrf2 was observed in some cells of GST-P-positive lesions that were negative for Nrf2 in the cytoplasm and in GST-P-negative lesions of the DEN-FF group that were positive for Nrf2 in the cytoplasm. The mRNA expression levels of Gpx2 or Gsta2, Nrf2-inducible enzymes, were increased in GST-P-positive tumors or GST-P-positive lesions, respectively. These results suggest that the activation of Nrf2, due to nuclear translocation, occurs in the GST-P-positive lesions. In addition, the development of continuous oxidative stress was identified by mRNA expression analyses as well as by measurements of GST activity and 8-hydroxydeoxyguanosine. These results suggest that the relative inhibition of nuclear translocation of Nrf2 in GST-P-negative lesions aggravated the condition of oxidative stress in the liver of rats given FF, resulting in enhanced tumor promotion in FF-induced hepatocarcinogenesis.

          Related collections

          Author and article information

          Journal
          Toxicol Sci
          Toxicological sciences : an official journal of the Society of Toxicology
          Oxford University Press (OUP)
          1096-0929
          1096-0929
          Dec 2008
          : 106
          : 2
          Affiliations
          [1 ] Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan. j_nisimr@cc.tuat.ac.jp
          Article
          kfn174
          10.1093/toxsci/kfn174
          18775883
          8cc80051-7f91-4838-b077-f65b7287ee7a
          History

          Comments

          Comment on this article