58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pitavastatin nanoparticle-engineered endothelial progenitor cells repair injured vessels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial progenitor cells (EPC) participate in vessel recovery and maintenance of normal endothelial function. Therefore, pitavastatin-nanoparticles (NPs)-engineered EPC may be effective in repairing injured vasculature. Pitavastatin-loaded poly(lactic-co-glycolic) acid (PLGA) NPs were obtained via ultrasonic emulsion solvent evaporation with PLGA as the carrier encapsulating pitavastatin. The effects and mechanism of pitavastatin-NPs on EPC proliferation in vitro were evaluated. Then, EPC that internalized pitavastatin-NPs were transplanted into rats after carotid artery injury. EPC homing, re-endothelialization, and neointima were evaluated by fluorescence labeling, evans Blue and hematoxylin/eosin (H&E) staining. Pitavastatin-NPs significantly improved EPC proliferation compared with control and pitavastatin group. Those effects were blocked by pretreatment with the pharmacological phosphoinositide 3-kinase (PI3K) blockers LY294002. After carotid artery injury, more transplanted EPC were detected in target zone in Pitavastatin-NPs group than pitavastatin and control group. Re-endothelialization was promoted and intimal hyperplasia was inhibited as well. Thus, pitavastatin-NPs promote EPC proliferation via PI3K signaling and accelerate recovery of injured carotid artery.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation.

          MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression primarily through translational repression. In erythropoietic (E) culture of cord blood CD34+ progenitor cells, the level of miR 221 and 222 is gradually and sharply down-modulated. Hypothetically, this decline could promote erythropoiesis by unblocking expression of key functional proteins. Indeed, (i) bioinformatic analysis suggested that miR 221 and 222 target the 3' UTR of kit mRNA; (ii) the luciferase assay confirmed that both miRs directly interact with the kit mRNA target site; and (iii) in E culture undergoing exponential cell growth, miR down-modulation is inversely related to increasing kit protein expression, whereas the kit mRNA level is relatively stable. Functional studies show that treatment of CD34+ progenitors with miR 221 and 222, via oligonucleotide transfection or lentiviral vector infection, causes impaired proliferation and accelerated differentiation of E cells, coupled with down-modulation of kit protein: this phenomenon, observed in E culture releasing endogenous kit ligand, is magnified in E culture supplemented with kit ligand. Furthermore, transplantation experiments in NOD-SCID mice reveal that miR 221 and 222 treatment of CD34+ cells impairs their engraftment capacity and stem cell activity. Finally, miR 221 and 222 gene transfer impairs proliferation of the kit+ TF-1 erythroleukemic cell line. Altogether, our studies indicate that the decline of miR 221 and 222 during exponential E growth unblocks kit protein production at mRNA level, thus leading to expansion of early erythroblasts. Furthermore, the results on kit+ erythroleukemic cells suggest a potential role of these miRs in cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nano-engineered mesenchymal stem cells as targeted therapeutic carriers.

            Poor availability in deep-seated solid tumors is a significant challenge that limits the effectiveness of currently used anticancer drugs. Approaches that can specifically enhance drug delivery to the tumor tissue can potentially improve therapeutic efficacy. In our current studies, we used nano-engineered mesenchymal stem cells (nano-engineered MSCs) as tumor-targeted therapeutic carriers. In addition to their exquisite tumor homing capabilities, MSCs overexpress efflux transporters such as P-glycoprotein and are highly drug resistant. The inherent tumor-tropic and drug-resistant properties make MSCs ideal carriers for toxic payload. Nano-engineered MSCs were prepared by treating human MSCs with drug-loaded polymeric nanoparticles. Incorporating nanoparticles in MSCs did not affect their viability, differentiation or migration potential. Nano-engineered MSCs induced dose-dependent cytotoxicity in A549 lung adenocarcinoma cells and MA148 ovarian cancer cells in vitro. An orthotopic A549 lung tumor model was used to monitor the in vivo distribution of nanoengineered MSCs. Intravenous injection of nanoparticles resulted in non-specific biodistribution, with significant accumulation in the liver and spleen while nano-engineered MSCs demonstrated selective accumulation and retention in lung tumors. These studies demonstrate the feasibility of developing nano-engineered MSCs loaded with high concentration of anticancer agents without affecting their tumor-targeting or drug resistance properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition.

              Biodegradable nanoparticles with diameters below 1000nm are of great interest in the contexts of targeted delivery and imaging. In this study, we prepared PLGA nanoparticles with well-defined sizes of ∼70nm (NP70), ∼100nm (NP100), ∼200nm (NP200), ∼400nm (NP400), ∼600nm (NP600) and ∼1000nm (NP1000) using facile fabrication methods based on a nanoprecipitation and solvent evaporation techniques. The nanoparticles showed a narrow size distribution with high yield. Then the size-controlled biodegradable nanoparticles were used to investigate how particle size at nanoscale affects interactions with tumor cells and macrophages. Interestingly, an opposite size-dependent interaction was observed in the two cells. As particle size gets smaller, cellular uptake increased in tumor cells and decreased in macrophages. We also found that paclitaxel (PTX)-loaded nanoparticles showed a size-dependent inhibition of tumor cell growth and the size-dependency was influenced by cellular uptake and PTX release. The size-controlled biodegradable nanoparticles described in this study would provide a useful means to further elucidate roles of particle size on various biomedical applications.
                Bookmark

                Author and article information

                Contributors
                doctorzhaoxiaohui@yahoo.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                22 December 2017
                22 December 2017
                2017
                : 7
                : 18067
                Affiliations
                [1 ]Institution of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
                [2 ]Cardiovascular Department, First People’s Hospital of Chong Qing Liang Jiang New Zone, Chongqing, 401120 China
                [3 ]GRID grid.470927.f, Cardiovascular Department, , The 180th Hospital of PLA, Quanzhou, ; Fujian, 362000 China
                Article
                18286
                10.1038/s41598-017-18286-x
                5741712
                29273744
                8ccaec9f-2453-4050-8e39-b88bbadd31d5
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 July 2017
                : 6 December 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article