9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staphylococcus aureus (SA) is the causative agent of both skin/soft tissue infections as well as invasive bloodstream infections. Though vaccines have been developed to target both humoral and T cell-mediated immune responses against SA, they have largely failed due to lack of protective efficacy. Group 1 CD1-restricted T cells recognize lipid rather than peptide antigens. Previously found to recognize lipids derived from cell wall of Mycobacterium tuberculosis (Mtb), these cells were associated with protection against Mtb infection in humans. Using a transgenic mouse model expressing human group 1 CD1 molecules (hCD1Tg), we demonstrate that group 1 CD1-restricted T cells can recognize SA-derived lipids in both immunization and infection settings. Systemic infection of hCD1Tg mice showed that SA-specific group 1 CD1-restricted T cell response peaked at 10 days post-infection, and hCD1Tg mice displayed significantly decreased kidney pathology at this time point compared with WT control mice. Immunodominant SA lipid antigens recognized by group 1 CD1-restricted T cells were comprised mainly of cardiolipin and phosphatidyl glycerol, with little contribution from lysyl-phosphatidyl glycerol which is a unique bacterial lipid not present in mammals. Group 1 CD1-restricted T cell lines specific for SA lipids also conferred protection against SA infection in the kidney after adoptive transfer. They were further able to effectively control SA replication in vitro through direct antigen presentation by group 1 CD1-expressing BMDCs. Together, our data demonstrate a previously unknown role for group 1 CD1-restricted SA lipid-specific T cells in the control of systemic MRSA infection.

          Author summary

          The bacterial pathogen Staphylococcus aureus (SA) is the cause of skin as well as invasive bloodstream infections, both in hospital and community settings. Efforts to develop preventative vaccines have been unsuccessful so far despite focusing on stimulating both B cell and T cell responses against SA. However, the unconventional group 1 CD1-restricted lipid-reactive T cell subset has never been studied in the context of systemic SA infection, and investigating their contribution to SA host defense could be fruitful in anti-SA vaccine design. Using a mouse model expressing group 1 CD1 molecules, we show that these T cells recognize and are activated by SA lipids during immunization and infection. The presence of group 1 CD1-restricted T cells decrease kidney inflammation in mice, and transfer of these cells into mice before SA infection results in ~10,000-fold decreases in kidney bacterial burdens. Together, our data demonstrate that activation of the group 1 CD1-restricted T cell response may be a promising avenue to investigate in the development of anti-SA vaccines.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007.

          To describe the frequency of selected antimicrobial resistance patterns among pathogens causing device-associated and procedure-associated healthcare-associated infections (HAIs) reported by hospitals in the National Healthcare Safety Network (NHSN). Data are included on HAIs (ie, central line-associated bloodstream infections, catheter-associated urinary tract infections, ventilator-associated pneumonia, and surgical site infections) reported to the Patient Safety Component of the NHSN between January 2006 and October 2007. The results of antimicrobial susceptibility testing of up to 3 pathogenic isolates per HAI by a hospital were evaluated to define antimicrobial-resistance in the pathogenic isolates. The pooled mean proportions of pathogenic isolates interpreted as resistant to selected antimicrobial agents were calculated by type of HAI and overall. The incidence rates of specific device-associated infections were calculated for selected antimicrobial-resistant pathogens according to type of patient care area; the variability in the reported rates is described. Overall, 463 hospitals reported 1 or more HAIs: 412 (89%) were general acute care hospitals, and 309 (67%) had 200-1,000 beds. There were 28,502 HAIs reported among 25,384 patients. The 10 most common pathogens (accounting for 84% of any HAIs) were coagulase-negative staphylococci (15%), Staphylococcus aureus (15%), Enterococcus species (12%), Candida species (11%), Escherichia coli (10%), Pseudomonas aeruginosa (8%), Klebsiella pneumoniae (6%), Enterobacter species (5%), Acinetobacter baumannii (3%), and Klebsiella oxytoca (2%). The pooled mean proportion of pathogenic isolates resistant to antimicrobial agents varied significantly across types of HAI for some pathogen-antimicrobial combinations. As many as 16% of all HAIs were associated with the following multidrug-resistant pathogens: methicillin-resistant S. aureus (8% of HAIs), vancomycin-resistant Enterococcus faecium (4%), carbapenem-resistant P. aeruginosa (2%), extended-spectrum cephalosporin-resistant K. pneumoniae (1%), extended-spectrum cephalosporin-resistant E. coli (0.5%), and carbapenem-resistant A. baumannii, K. pneumoniae, K. oxytoca, and E. coli (0.5%). Nationwide, the majority of units reported no HAIs due to these antimicrobial-resistant pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections — United States

            Introduction Staphylococcus aureus is one of the most common pathogens in health care facilities and in the community, and can cause invasive infections, sepsis, and death. Despite progress in preventing methicillin-resistant S. aureus (MRSA) infections in health care settings, assessment of the problem in both health care and community settings is needed. Further, the epidemiology of methicillin-susceptible S. aureus (MSSA) infections is not well described at the national level. Methods Data from the Emerging Infections Program (EIP) MRSA population surveillance (2005–2016) and from the Premier and Cerner Electronic Health Record databases (2012–2017) were analyzed to describe trends in incidence of hospital-onset and community-onset MRSA and MSSA bloodstream infections and to estimate the overall incidence of S. aureus bloodstream infections in the United States and associated in-hospital mortality. Results In 2017, an estimated 119,247 S. aureus bloodstream infections with 19,832 associated deaths occurred. During 2005–2012 rates of hospital-onset MRSA bloodstream infection decreased by 17.1% annually, but the decline slowed during 2013–2016. Community-onset MRSA declined less markedly (6.9% annually during 2005–2016), mostly related to declines in health care–associated infections. Hospital-onset MSSA has not significantly changed (p = 0.11), and community-onset MSSA infections have slightly increased (3.9% per year, p<0.0001) from 2012 to 2017. Conclusions and Implications for Public Health Practice Despite reductions in incidence of MRSA bloodstream infections since 2005, S. aureus infections account for significant morbidity and mortality in the United States. To reduce the incidence of these infections further, health care facilities should take steps to fully implement CDC recommendations for prevention of device- and procedure-associated infections and for interruption of transmission. New and novel prevention strategies are also needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD1: antigen presentation and T cell function.

              This review summarizes the major features of CD1 genes and proteins, the patterns of intracellular trafficking of CD1 molecules, and how they sample different intracellular compartments for self- and foreign lipids. We describe how lipid antigens bind to CD1 molecules with their alkyl chains buried in hydrophobic pockets and expose their polar lipid headgroup whose fine structure is recognized by the TCR of CD1-restricted T cells. CD1-restricted T cells carry out effector, helper, and adjuvant-like functions and interact with other cell types including macrophages, dendritic cells, NK cells, T cells, and B cells, thereby contributing to both innate and adaptive immune responses. Insights gained from mice and humans now delineate the extensive range of diseases in which CD1-restricted T cells play important roles and reveal differences in the role of CD1a, CD1b, and CD1c in contrast to CD1d. Invariant TCR alpha chains, self-lipid reactivity, and rapid effector responses empower a subset of CD1d-restricted T cells (NKT cells) to have unique effector functions without counterpart among MHC-restricted T cells. This review describes the function of CD1-restricted T cells in antimicrobial responses, antitumor immunity, and in regulating the balance between tolerance and autoimmunity.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: Writing – original draft
                Role: Data curationRole: InvestigationRole: Writing – review & editing
                Role: Data curationRole: InvestigationRole: Writing – review & editing
                Role: Data curationRole: Investigation
                Role: Data curationRole: InvestigationRole: Writing – review & editing
                Role: Data curationRole: InvestigationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: SupervisionRole: Writing – original draft
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                28 April 2020
                April 2020
                : 16
                : 4
                : e1008443
                Affiliations
                [1 ] Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
                [2 ] Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, United States of America
                [3 ] Department of Medicine, National Jewish Health, Denver, United States of America
                Portland VA Medical Center, Oregon Health and Science University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-3133-5236
                http://orcid.org/0000-0001-5974-9815
                http://orcid.org/0000-0001-8445-4218
                http://orcid.org/0000-0002-1376-0098
                http://orcid.org/0000-0002-9835-4784
                Article
                PPATHOGENS-D-19-01794
                10.1371/journal.ppat.1008443
                7188215
                32343740
                8cccfe25-49ce-4c5a-a4bb-dbde0e917712
                © 2020 Visvabharathy et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 September 2019
                : 28 February 2020
                Page count
                Figures: 7, Tables: 0, Pages: 27
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: AI057460
                Award Recipient :
                This work is supported by NIH R01 grant AI057460 (to CRW) and T32 AI007476 to (LV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Biochemistry
                Lipids
                Biology and Life Sciences
                Anatomy
                Renal System
                Kidneys
                Medicine and Health Sciences
                Anatomy
                Renal System
                Kidneys
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Lymphocytes
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Lymphocytes
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Lymphocytes
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Lymphocytes
                Research and Analysis Methods
                Immunologic Techniques
                Immunoassays
                Enzyme-Linked Immunoassays
                Biology and Life Sciences
                Anatomy
                Lymphatic System
                Lymph Nodes
                Medicine and Health Sciences
                Anatomy
                Lymphatic System
                Lymph Nodes
                Biology and Life Sciences
                Immunology
                Immune Response
                Medicine and Health Sciences
                Immunology
                Immune Response
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article