31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Cell Extraction Method for Oily Sediments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydrocarbons can be found in many different habitats and represent an important carbon source for microbes. As fossil fuels, they are also an important economical resource and through natural seepage or accidental release they can be major pollutants. DNA-specific stains and molecular probes bind to hydrocarbons, causing massive background fluorescence, thereby hampering cell enumeration. The cell extraction procedure of Kallmeyer et al. ( 2008) separates the cells from the sediment matrix. In principle, this technique can also be used to separate cells from oily sediments, but it was not originally optimized for this application. Here we present a modified extraction method in which the hydrocarbons are removed prior to cell extraction. Due to the reduced background fluorescence the microscopic image becomes clearer, making cell identification, and enumeration much easier. Consequently, the resulting cell counts from oily samples treated according to our new protocol are significantly higher than those treated according to Kallmeyer et al. ( 2008). We tested different amounts of a variety of solvents for their ability to remove hydrocarbons and found that n-hexane and – in samples containing more mature oils – methanol, delivered the best results. However, as solvents also tend to lyse cells, it was important to find the optimum solvent to sample ratio, at which hydrocarbon extraction is maximized and cell lysis minimized. A volumetric ratio of 1:2–1:5 between a formalin-fixed sediment slurry and solvent delivered highest cell counts. Extraction efficiency was around 30–50% and was checked on both oily samples spiked with known amounts of E. coli cells and oil-free samples amended with fresh and biodegraded oil. The method provided reproducible results on samples containing very different kinds of oils with regard to their degree of biodegradation. For strongly biodegraded oil MeOH turned out to be the most appropriate solvent, whereas for less biodegraded samples n-hexane delivered best results.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Biological activity in the deep subsurface and the origin of heavy oil.

          At temperatures up to about 80 degrees C, petroleum in subsurface reservoirs is often biologically degraded, over geological timescales, by microorganisms that destroy hydrocarbons and other components to produce altered, denser 'heavy oils'. This temperature threshold for hydrocarbon biodegradation might represent the maximum temperature boundary for life in the deep nutrient-depleted Earth. Most of the world's oil was biodegraded under anaerobic conditions, with methane, a valuable commodity, often being a major by-product, which suggests alternative approaches to recovering the world's vast heavy oil resource that otherwise will remain largely unproduced.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.

            Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the ANME-2c lineage within the Methanosarcinales, both previously assigned to the methanotrophic archaea. The archaeal lipids in the Guaymas Basin sediments included archaeol, diagnostic for nonthermophilic euryarchaeota, and sn-2-hydroxyarchaeol, with the latter compound being particularly abundant in cultured members of the Methanosarcinales. The concentrations of these compounds were among the highest observed so far in studies of methane seep environments. The delta-(13)C values of these lipids (delta-(13)C = -89 to -58 per thousand) indicate an origin from anaerobic methanotrophic archaea. This molecular-isotopic signature was found not only in samples that yielded predominantly ANME-2 clones but also in samples that yielded exclusively ANME-1 clones. ANME-1 archaea therefore remain strong candidates for mediation of the anaerobic oxidation of methane. Based on 16S rRNA data, the Guaymas sediments harbor phylogenetically diverse bacterial populations, which show considerable overlap with bacterial populations of geothermal habitats and natural or anthropogenic hydrocarbon-rich sites. Consistent with earlier observations, our combined evidence from bacterial phylogeny and molecular-isotopic data indicates an important role of some novel deeply branching bacteria in anaerobic methanotrophy. Anaerobic methane oxidation likely represents a significant and widely occurring process in the trophic ecology of methane-rich hydrothermal vents. This study stresses a high diversity among communities capable of anaerobic oxidation of methane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico.

              Methane was the most abundant hydrocarbon released during the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Beyond relevancy to this anthropogenic event, this methane release simulates a rapid and relatively short-term natural release from hydrates into deep water. Based on methane and oxygen distributions measured at 207 stations throughout the affected region, we find that within ~120 days from the onset of release ~3.0 × 10(10) to 3.9 × 10(10) moles of oxygen were respired, primarily by methanotrophs, and left behind a residual microbial community containing methanotrophic bacteria. We suggest that a vigorous deepwater bacterial bloom respired nearly all the released methane within this time, and that by analogy, large-scale releases of methane from hydrate in the deep ocean are likely to be met by a similarly rapid methanotrophic response.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front. Microbio.
                Frontiers in Microbiology
                Frontiers Research Foundation
                1664-302X
                21 November 2011
                2011
                : 2
                : 233
                Affiliations
                [1] 1simpleGeomicrobiology Group, Institute of Earth and Environmental Science, University of Potsdam Potsdam, Germany
                Author notes

                Edited by: Andreas Teske, University of North Carolina at Chapel Hill, USA

                Reviewed by: Slava Epstein, Northeastern University, USA; Casey R. J. Hubert, Newcastle University, UK

                *Correspondence: Michael Lappé, Geomicrobiology Group, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany. e-mail: lappe@ 123456geo.uni-potsdam.de

                This article was submitted to Frontiers in Extreme Microbiology, a specialty of Frontiers in Microbiology.

                Article
                10.3389/fmicb.2011.00233
                3221397
                22125553
                8ccfd806-c0e0-4f10-9b7d-a3512601a5ea
                Copyright © 2011 Lappé and Kallmeyer.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 11 July 2011
                : 04 November 2011
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 26, Pages: 11, Words: 6316
                Categories
                Microbiology
                Methods Article

                Microbiology & Virology
                cell separation,subsurface microbiology,cell enumeration,hydrocarbons
                Microbiology & Virology
                cell separation, subsurface microbiology, cell enumeration, hydrocarbons

                Comments

                Comment on this article