1,122
views
0
recommends
+1 Recommend
0 collections
    10
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential neuronal expression of receptor interacting protein 3 in rat retina: involvement in ischemic stress response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Receptor-interacting protein 3 (RIP3), a member of RIP family proteins, has been shown to participate in programmed necrosis or necroptosis in cell biology studies. Evidence suggests that necroptosis may be a mode of neuronal death in the retina.

          Results

          In the present study we determined the expression of RIP3 in normal rat retina and its changes following acute high intraocular pressure (aHIOP). RIP3 immunoreactivity (IR) was largely present in the inner retinal layers, localized to subsets of cells expressing neuron-specific nuclear antigen (NeuN), parvalbumin and calbindin in the ganglion cell layer (GCL) and inner nuclear layer (INL). No double labeling was detected for RIP3 with PKC-α or rhodopsin. RIP3 immunoreactivity was increased in the GCL at 6 hr and 12 hr, but reduced at 24 hr in the retina, without apparent alteration in laminar or cellular distribution pattern. Western blot analysis confirmed the above time-dependent alteration in RIP3 protein expression. RIP3 expressing cells frequently co-localized with propidium iodide (PI). A few co-localized cells were observed between RIP3 and Bax or cleaved caspase-3 in the GCL in 12 hr following aHIOP.

          Conclusions

          The results indicate that RIP3 is expressed differentially in retinal neurons in adult rats, including subsets of ganglion cells, amacrine and horizontal cells. RIP3 protein levels are elevated rapidly following aHIOP. RIP3 labeling co-localized with PI, Bax or cleaved caspase-3 among cells in the ganglion cell layer following aHIOP, which suggest its involvement of RIP3 in neuronal responses to acute ischemic insults.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses.

          Members of the tumor necrosis factor (TNF) receptor (TNFR) superfamily are potent regulators of apoptosis, a process that is important for the maintenance of immune homeostasis. Recent evidence suggests that TNFR-1 and Fas and TRAIL receptors can also trigger an alternative form of cell death that is morphologically distinct from apoptosis. Because distinct molecular components including the serine/threonine protein kinase receptor-interacting protein (RIP) are required, we have referred to this alternative form of cell death as "programmed necrosis." We show that TNFR-2 signaling can potentiate programmed necrosis via TNFR-1. When cells were pre-stimulated through TNFR-2 prior to subsequent activation of TNFR-1, enhanced cell death and recruitment of RIP to the TNFR-1 complex were observed. However, TNF-induced programmed necrosis was normally inhibited by caspase-8 cleavage of RIP. To ascertain the physiological significance of RIP and programmed necrosis, we infected Jurkat cells with vaccinia virus (VV) and found that VV-infected cells underwent programmed necrosis in response to TNF, but deficiency of RIP rescued the infected cells from TNF-induced cytotoxicity. Moreover, TNFR-2-/- mice exhibited reduced inflammation in the liver and defective viral clearance during VV infection. Interestingly, death effector domain-containing proteins such as MC159, E8, K13, and cellular FLIP, but not the apoptosis inhibitors Bcl-xL, p35, and XIAP, potently suppressed programmed necrosis. Thus, TNF-induced programmed necrosis is facilitated by TNFR-2 signaling and caspase inhibition and may play a role in controlling viral infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis.

            Apoptosis has been shown to be a significant form of cell loss in many diseases. Detachment of photoreceptors from the retinal pigment epithelium, as seen in various retinal disorders, causes photoreceptor loss and subsequent vision decline. Although caspase-dependent apoptotic pathways are activated after retinal detachment, caspase inhibition by the pan-caspase inhibitor Z-VAD fails to prevent photoreceptor death; thus, we investigated other pathways leading to cell loss. Here, we show that receptor interacting protein (RIP) kinase-mediated necrosis is a significant mode of photoreceptor cell loss in an experimental model of retinal detachment and when caspases are inhibited, RIP-mediated necrosis becomes the predominant form of death. RIP3 expression, a key activator of RIP1 kinase, increased more than 10-fold after retinal detachment. Morphological assessment of detached retinas treated with Z-VAD showed decreased apoptosis but significantly increased necrotic photoreceptor death. RIP1 kinase inhibitor necrostatin-1 or Rip3 deficiency substantially prevented those necrotic changes and reduced oxidative stress and mitochondrial release of apoptosis-inducing factor. Thus, RIP kinase-mediated programmed necrosis is a redundant mechanism of photoreceptor death in addition to apoptosis, and simultaneous inhibition of RIP kinases and caspases is essential for effective neuroprotection and may be a novel therapeutic strategy for treatment of retinal disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The RIP kinases: crucial integrators of cellular stress.

              Since the discovery of the first member ten years ago, the receptor-interacting protein (RIP) family kinases have emerged as essential sensors of cellular stress. The different members integrate both extracellular stress signals transmitted by various cell-surface receptors and signals emanating from intracellular stress. The cascades of events initiated by activated RIPs are complex. Not only are pro-survival, inflammatory and immune responses triggered by RIP kinases via the activation of transcription factors such as NF-kappaB and AP-1, but opposing, death-inducing programs can also be initiated by the RIP kinases. Hence, RIP kinases are crucial regulators of cell survival and cell death.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2013
                2 February 2013
                : 14
                : 16
                Affiliations
                [1 ]Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
                [2 ]Eight-year Clinical Medicine Program, Class 2002, Central South University Xiangya School of Medicine, Changsha, Hunan, 410013, China
                [3 ]Department of Histology and Embrology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
                Article
                1471-2202-14-16
                10.1186/1471-2202-14-16
                3570281
                23374330
                8ce5e48b-c12e-4ce7-8f4b-b01a93f1f044
                Copyright ©2013 Huang et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 August 2012
                : 31 January 2013
                Categories
                Research Article

                Neurosciences
                receptor-interacting protein 3,retina,necroptosis,ahiop
                Neurosciences
                receptor-interacting protein 3, retina, necroptosis, ahiop

                Comments

                Comment on this article