Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Survivin: a unique target for tumor therapy

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Survivin is the smallest member of the Inhibitor of apoptosis (IAP) family of proteins, involved in inhibition of apoptosis and regulation of cell cycle. These functional attributes make Survivin a unique protein exhibiting divergent functions i.e. regulating cell proliferation and cell death. Expression pattern of Survivin is also distinctive; it is prominently expressed during embryonal development, absent in most normal, terminally differentiated tissues but upregulated in a variety of human cancers. Expression of Survivin in tumours correlates with not only inhibition of apoptosis and a decreased rate of cell death, but also resistance to chemotherapy and aggressiveness of tumours. Therefore, Survivin is an important target for cancer vaccines and therapeutics. Survivin has also been found to be prominently expressed on both human and embryonic stem cells and many somatic stem cell types indicating its yet unexplored role in stem cell generation and maintenance. Overall, Survivin emerges as a molecule with much wider role in cellular homeostasis. This review will discuss various aspects of Survivin biology and its role in regulation of apoptosis, cell division, chemo-resistance and tumour progression. Various molecular and immunotherapeutic approaches targeting Survivin will also be discussed.

      Related collections

      Most cited references 146

      • Record: found
      • Abstract: found
      • Article: not found

      The blockade of immune checkpoints in cancer immunotherapy.

      Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Immune checkpoint blockade: a common denominator approach to cancer therapy.

        The immune system recognizes and is poised to eliminate cancer but is held in check by inhibitory receptors and ligands. These immune checkpoint pathways, which normally maintain self-tolerance and limit collateral tissue damage during anti-microbial immune responses, can be co-opted by cancer to evade immune destruction. Drugs interrupting immune checkpoints, such as anti-CTLA-4, anti-PD-1, anti-PD-L1, and others in early development, can unleash anti-tumor immunity and mediate durable cancer regressions. The complex biology of immune checkpoint pathways still contains many mysteries, and the full activity spectrum of checkpoint-blocking drugs, used alone or in combination, is currently the subject of intense study. Copyright © 2015 Elsevier Inc. All rights reserved.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Taking dendritic cells into medicine.

          Dendritic cells (DCs) orchestrate a repertoire of immune responses that bring about resistance to infection and silencing or tolerance to self. In the settings of infection and cancer, microbes and tumours can exploit DCs to evade immunity, but DCs also can generate resistance, a capacity that is readily enhanced with DC-targeted vaccines. During allergy, autoimmunity and transplant rejection, DCs instigate unwanted responses that cause disease, but, again, DCs can be harnessed to silence these conditions with novel therapies. Here we present some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy.
            Bookmark

            Author and article information

            Affiliations
            [ ]Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, J-3 Block, Room No: LG21, Sector 125, Noida, Uttar Pradesh 201303 India
            [ ]Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
            [ ]Talwar Research Foundation, E-8 Neb Valley, Neb Sarai, New Delhi, 110 068 India
            Contributors
            himani14garg@yahoo.com
            prerna2309@gmail.com
            jagdishgupta2@gmail.com
            gptalwar@gmail.com
            sdubey@amity.edu
            Journal
            Cancer Cell Int
            Cancer Cell Int
            Cancer Cell International
            BioMed Central (London )
            1475-2867
            23 June 2016
            23 June 2016
            2016
            : 16
            27340370 4917988 326 10.1186/s12935-016-0326-1
            © The Author(s) 2016

            Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

            Funding
            Funded by: FundRef http://dx.doi.org/10.13039/501100001843, Science and Engineering Research Board;
            Award ID: SR/FT/LS-75/2012
            Award Recipient :
            Categories
            Review
            Custom metadata
            © The Author(s) 2016

            Oncology & Radiotherapy

            iaps, survivin, immunotherapy, apoptosis

            Comments

            Comment on this article