6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Wooden Skull: An Innovation through the Use of Local Materials and Technology to Promote the Teaching and Learning of Human Anatomy

      research-article
      1 , 2 , 3 , 1 , 4 ,
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeleton models are important in facilitating a student's easy retention and recollection of information in the future. These may assist students carry out hands-on practice in order to acquire and practice new skills that are relevant to first aid. The increasing number of medical institutions and medical students attracts the challenge of inadequate facilitation of the teaching and learning processes. This warrants a study and/or an exploration of an alternative solution such as wooden models in order to solve the problem of scarce and ethically restricted human teaching aids. Wooden pieces (50 cm length × 20 cm diameter) from a Jacaranda mimosifolia tree were prepared for the carving process, and wooden replicas of human skulls were made. Two experimental groups of randomly selected medical students (60: active and 60: control) were separately taught using wooden and natural skull models, respectively. The two groups were assessed and evaluated using the natural skull models to compare their understanding of the anatomy of the skull. Additionally, opinion statements were collected from participants in the active group during the oral examination. Six (6) wooden skull models were produced and used for experimental study. Comparisons of academic scores (mean and median) between active (students using the wooden skull) and control (students using natural skull) groups showed no statistically significant difference ( P ≥ 0.05). Concerning the enhancement of learning skills, the wooden model was constructed in a way that would be able to enhance learning as it would be the natural skull. The wooden skull model, with more improvement in structural formation, can adequately facilitate the teaching and learning of anatomy of the human skull. This project and the experimental study about utilization of the wooden skull model provide a good potential of using the wooden models to supplement the use of the natural human skull.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          The anatomy of anatomy: a review for its modernization.

          Anatomy has historically been a cornerstone in medical education regardless of nation or specialty. Until recently, dissection and didactic lectures were its sole pedagogy. Teaching methodology has been revolutionized with more reliance on models, imaging, simulation, and the Internet to further consolidate and enhance the learning experience. Moreover, modern medical curricula are giving less importance to anatomy education and to the acknowledged value of dissection. Universities have even abandoned dissection completely in favor of user-friendly multimedia, alternative teaching approaches, and newly defined priorities in clinical practice. Anatomy curriculum is undergoing international reformation but the current framework lacks uniformity among institutions. Optimal learning content can be categorized into the following modalities: (1) dissection/prosection, (2) interactive multimedia, (3) procedural anatomy, (4) surface and clinical anatomy, and (5) imaging. The importance of multimodal teaching, with examples suggested in this article, has been widely recognized and assessed. Nevertheless, there are still ongoing limitations in anatomy teaching. Substantial problems consist of diminished allotted dissection time and the number of qualified anatomy instructors, which will eventually deteriorate the quality of education. Alternative resources and strategies are discussed in an attempt to tackle these genuine concerns. The challenges are to reinstate more effective teaching and learning tools while maintaining the beneficial values of orthodox dissection. The UK has a reputable medical education but its quality could be improved by observing international frameworks. The heavy penalty of not concentrating on sufficient anatomy education will inevitably lead to incompetent anatomists and healthcare professionals, leaving patients to face dire repercussions. Copyright 2010 American Association of Anatomists.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

            Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians.

              Although simulation-based education is now commonly utilized in medicine, its use in the instruction of congenital heart disease remains limited. The objective of this study is to evaluate whether heart models created with three-dimensional printing technology can be effectively incorporated into a simulation-based congenital heart disease and critical care training curriculum for pediatric resident physicians.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2020
                27 August 2020
                : 2020
                : 8036737
                Affiliations
                1Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Uganda
                2Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, Uganda
                3Department of Human Anatomy, School of Health Sciences, Makerere University, Uganda
                4Kabale University School of Medicine, Kabale University, Uganda
                Author notes

                Academic Editor: Heather F. Smith

                Author information
                https://orcid.org/0000-0002-7022-9818
                Article
                10.1155/2020/8036737
                7474353
                8cf87d9b-f5fc-44bd-99e8-7cee853c9868
                Copyright © 2020 Kintu Mugagga et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 June 2020
                : 8 August 2020
                Funding
                Funded by: Fogarty International Center
                Categories
                Research Article

                Comments

                Comment on this article