15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Progress and Challenges in the Search for the Mechanisms of Pulsatile Gonadotropin-Releasing Hormone Secretion

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fertility relies on the proper functioning of the hypothalamic–pituitary–gonadal axis. The hormonal cascade begins with hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH) into the hypophyseal portal system. In turn, the GnRH-activated gonadotrophs in the anterior pituitary release gonadotropins, which then act on the gonads to regulate gametogenesis and sex steroidogenesis. Finally, sex steroids close this axis by feeding back to the hypothalamus. Despite this seeming straightforwardness, the axis is orchestrated by a complex neuronal network in the central nervous system. For reproductive success, GnRH neurons, the final output of this network, must integrate and translate a wide range of cues, both environmental and physiological, to the gonadotrophs via pulsatile GnRH secretion. This secretory profile is critical for gonadotropic function, yet the mechanisms underlying these pulses remain unknown. Literature supports both intrinsically and extrinsically driven GnRH neuronal activity. However, the caveat of the techniques supporting either one of the two hypotheses is the gap between events recorded at a single-cell level and GnRH secretion measured at the population level. This review aims to compile data about GnRH neuronal activity focusing on the physiological output, GnRH secretion.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of Kiss1 gene expression in the brain of the female mouse.

          The Kiss1 gene encodes a family of neuropeptides called kisspeptins, which activate the receptor G protein-coupled receptor-54 and play a role in the neuroendocrine regulation of GnRH secretion. We examined whether estradiol (E2) regulates KiSS-1 in the forebrain of the female mouse by comparing KiSS-1 mRNA expression among groups of ovary-intact (diestrus), ovariectomized (OVX), and OVX plus E2-treated mice. In the arcuate nucleus (Arc), KiSS-1 expression increased after ovariectomy and decreased with E2 treatment. Conversely, in the anteroventral periventricular nucleus (AVPV), KiSS-1 expression was reduced after ovariectomy and increased with E2 treatment. To determine whether the effects of E2 on KiSS-1 are mediated through estrogen receptor (ER)alpha or ERbeta, we evaluated the effects of E2 in OVX mice that lacked functional ERalpha or ERbeta. In OVX mice that lacked functional ERalpha, KiSS-1 mRNA did not respond to E2 in either the Arc or AVPV, suggesting that ERalpha is essential for mediating the inhibitory and stimulatory effects of E2. In contrast, KiSS-1 mRNA in OVX mice that lacked functional ERbeta responded to E2 exactly as wild-type animals. Double-label in situ hybridization revealed that virtually all KiSS-1-expressing neurons in the Arc and AVPV coexpress ERalpha, suggesting that the effects of E2 are mediated directly through KiSS-1 neurons. We conclude that KiSS-1 neurons in the Arc, which are inhibited by E2, may play a role in the negative feedback regulation of GnRH secretion, whereas KiSS-1 neurons in the AVPV, which are stimulated by E2, may participate in the positive feedback regulation of GnRH secretion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin of luteinizing hormone-releasing hormone neurons.

            Neurons expressing luteinizing hormone-releasing hormone (LHRH), found in the septal-preoptic nuclei and hypothalamus, control the release of gonadotropic hormones from the anterior pituitary gland and facilitate reproductive behaviour. LHRH-expressing neurons are also found in the nervus terminalis, a cranial nerve that is a part of the accessory olfactory system and which projects directly from the nose to the septal-preoptic nuclei in the brain. During development, LHRH-immunoreactivity is detected in the peripheral parts of the nervus terminalis before it is found in the brain. Using a combination of LHRH immunocytochemistry and tritiated thymidine autoradiography in fetal mice, we show that LHRH neurons originate in the medial olfactory placode of the developing nose, migrate across the nasal septum and enter the forebrain with the nervus terminalis, arching into the septal-preoptic area and hypothalamus. Clinically, this migratory route for LHRH-expressing neurons could explain the deficiency of gonadotropins seen in 'Kallmann's syndrome' (hypogonadotropic hypogonadism with anosmia).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge.

              Kisspeptin and its receptor GPR54 have recently been identified as key signaling partners in the neural control of fertility in animal models and humans. The gonadotropin-releasing hormone (GnRH) neurons represent the final output neurons of the neural network controlling fertility and are suspected to be the primary locus of kisspeptin-GPR54 signaling. Using mouse models, the present study addressed whether kisspeptin and GPR54 have a key role in the activation of GnRH neurons to generate the luteinizing hormone (LH) surge responsible for ovulation. Dual-label immunocytochemistry experiments showed that 40-60% of kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) expressed estrogen receptor alpha and progesterone receptors. Using an ovariectomized, gonadal steroid-replacement regimen, which reliably generates an LH surge, approximately 30% of RP3V kisspeptin neurons were found to express c-FOS in surging mice compared with 0% in nonsurging controls. A strong correlation was found between the percentage of c-FOS-positive kisspeptin neurons and the percentage of c-FOS-positive GnRH neurons. To evaluate whether kisspeptin and/or GPR54 were essential for GnRH neuron activation and the LH surge, Gpr54- and Kiss1-null mice were examined. Whereas wild-type littermates all exhibited LH surges and c-FOS in approximately 50% of their GnRH neurons, none of the mutant mice from either line showed an LH surge or any GnRH neurons with c-FOS. These observations provide the first evidence that kisspeptin-GPR54 signaling is essential for GnRH neuron activation that initiates ovulation. This broadens considerably the potential roles and therapeutic possibilities for kisspeptin and GPR54 in fertility regulation.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/166474
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                24 July 2017
                2017
                : 8
                : 180
                Affiliations
                [1] 1Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, MD, United States
                Author notes

                Edited by: Alfonso Abizaid, Carleton University, Canada

                Reviewed by: Daniel J. Spergel, Yale University, United States; Zvi Naor, Tel Aviv University, Israel

                *Correspondence: Stephanie Constantin, constantinss@ 123456mail.nih.gov

                Specialty section: This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2017.00180
                5523686
                28790978
                8d0adeb5-355a-45be-bc22-b3e36a74885e
                Copyright © 2017 Constantin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 June 2017
                : 10 July 2017
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 148, Pages: 11, Words: 8050
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Categories
                Endocrinology
                Mini Review

                Endocrinology & Diabetes
                gonadotropin-releasing hormone release,preovulatory surge,gonadotropin-releasing hormone pulsatility,kisspeptin,electrophysiology,calcium imaging

                Comments

                Comment on this article