+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction between mesenchymal stem cells and endothelial cells restores endothelial permeability via paracrine hepatocyte growth factor in vitro

      , , ,

      Stem Cell Research & Therapy

      BioMed Central

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Mesenchymal stem cells (MSCs) have potent stabilising effects on vascular endothelium injury, inhibiting endothelial permeability in lung injury via paracrine hepatocyte growth factor (HGF). Recently, it has been indicated that MSCs secrete more factors by MSC-endothelial cell (MSC-EC) interactions. We hypothesised that MSC-EC interactions restore endothelial permeability induced by lipopolysaccharide (LPS) via paracrine HGF.


          We investigated the endothelial permeability induced by LPS under two co-culture conditions. Human pulmonary microvascular endothelial cells (HPMECs) were added into the upper chambers of cell-culture inserts, while two different co-culture conditions were used in the lower side of the transwells, as follows: (1) MSC-EC interaction group: MSCs and HPMECs contact co-culture; (2) MSC group: MSCs only. The endothelial paracellular and transcellular permeabilities in the upper side of transwells were detected. Then the concentration of HGF was measured in the culture medium by using an enzyme-linked immunosorbent assay kit, followed by neutralisation of HGF with anti-HGF antibody in the co-culture medium. In addition, adherens junction and cytoskeleton protein expressions were measured by Western blot and immunofluorescence. HPMEC proliferation was analysed by bromodeoxyuridine incorporation assay.


          The paracellular permeability significantly increased after LPS stimulation in a dose-dependent and time-dependent manner. Meanwhile, MSC-EC interaction more significantly decreased endothelial paracellular and transcellular permeability induced by LPS. Moreover, HGF levels in the MSC-EC interaction group were much higher than those of the MSC group. However, neutralising HGF with anti-HGF antibody inhibited the role of MSC-EC interaction in improving endothelial permeability. Compared with the MSC group, MSC-EC interaction increased vascular endothelial (VE)-cadherin and occludin protein expression, reduced caveolin-1 protein expression in HPMECs, and restored remodelling of F-actin and junctional localisation of VE-cadherin. Furthermore, the proliferation ratio in the MSC-EC interaction group was higher than that of the MSC group. However, the effects of MSCs were significantly blocked by anti-HGF antibody.


          These data suggested that MSC-EC interaction decreased endothelial permeability induced by LPS, which was attributed mainly to HGF secreted by MSCs. The main mechanisms by which HGF restored the integrity of endothelial monolayers were remodelling of endothelial intercellular junctions, decreasing caveolin-1 protein expression, and inducing proliferation in HPMECs.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13287-015-0025-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of endothelial permeability via paracellular and transcellular transport pathways.

          The endothelium functions as a semipermeable barrier regulating tissue fluid homeostasis and transmigration of leukocytes and providing essential nutrients across the vessel wall. Transport of plasma proteins and solutes across the endothelium involves two different routes: one transcellular, via caveolae-mediated vesicular transport, and the other paracellular, through interendothelial junctions. The permeability of the endothelial barrier is an exquisitely regulated process in the resting state and in response to extracellular stimuli and mediators. The focus of this review is to provide a comprehensive overview of molecular and signaling mechanisms regulating endothelial barrier permeability with emphasis on the cross-talk between paracellular and transcellular transport pathways.
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of endothelial junctional permeability.

            The endothelium is a semi-permeable barrier that regulates the flux of liquid and solutes, including plasma proteins, between the blood and surrounding tissue. The permeability of the vascular barrier can be modified in response to specific stimuli acting on endothelial cells. Transport across the endothelium can occur via two different pathways: through the endothelial cell (transcellular) or between adjacent cells, through interendothelial junctions (paracellular). This review focuses on the regulation of the paracellular pathway. The paracellular pathway is composed of adhesive junctions between endothelial cells, both tight junctions and adherens junctions. The actin cytoskeleton is bound to each junction and controls the integrity of each through actin remodeling. These interendothelial junctions can be disassembled or assembled to either increase or decrease paracellular permeability. Mediators, such as thrombin, TNF-alpha, and LPS, stimulate their respective receptor on endothelial cells to initiate signaling that increases cytosolic Ca2+ and activates myosin light chain kinase (MLCK), as well as monomeric GTPases RhoA, Rac1, and Cdc42. Ca2+ activation of MLCK and RhoA disrupts junctions, whereas Rac1 and Cdc42 promote junctional assembly. Increased endothelial permeability can be reversed with "barrier stabilizing agents," such as sphingosine-1-phosphate and cyclic adenosine monophosphate (cAMP). This review provides an overview of the mechanisms that regulate paracellular permeability.
              • Record: found
              • Abstract: not found
              • Article: not found

              Biological markers of acute lung injury: prognostic and pathogenetic significance.


                Author and article information

                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                24 March 2015
                24 March 2015
                : 6
                : 1
                Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University, #87 Dingjiaqiao Road, Nanjing, 210009 Jiangsu P.R. China
                © Chen et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Custom metadata
                © The Author(s) 2015

                Molecular medicine


                Comment on this article