7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Particle resuspension during the use of vacuum cleaners on residential carpet.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vacuuming is generally considered to be an important activity with respect to the cleanliness of indoor environments but may lead to short-term resuspension of particulate matter and elevated particle mass in indoor air. Because resuspended particles often contain toxicants, such as lead and pesticides, or consist of biological agents that can trigger allergic reactions, it is important to understand the role of vacuuming on short-term variations in indoor particulate matter concentrations. The inhalation of particles during vacuuming events may affect adversely those whose occupation requires them to clean a wide range of indoor environments, from homes to schools and offices, as well as those who occupy those environments. In response, a series of 46 experiments was completed to determine time-variant concentrations of both PM(10) and PM(2.5) during various vacuuming activities in 12 separate apartments. Experiments involved the use of two different non-HEPA vacuum cleaners and were completed with a vacuum cleaner activated (switched on) as well as deactivated (switched off). The latter was intended to provide insight on the potential for resuspension of particles by the mechanical agitation of vacuum cleaner movement across carpet. Separate experiments were completed also using "mock" vacuuming simulations, that is, walking on the carpet in a manner consistent with using a vacuum cleaner. Results are presented as incremental particulate matter concentration increases, relative to background (prevacuum) concentrations, and peak-to-background particle concentration ratios. Results indicate significant resuspension of PM(10) mass during vacuum cleaning, with a mean time-averaged PM(10) increase of greater than 17 mu g/m(3) above background. Resuspension of PM(2.5) mass was determined to be small, that is, PM(10) mass was dominated by particles greater than 2.5 mu m. The frequency of vacuuming (between a 10-day standard frequency and several experiments at > 24 days between vacuuming) had little influence on resuspended particle mass. Resuspension by mechanical agitation (rolling of vacuum cleaner across carpet) with the vacuum cleaner switched off was determined to be substantial, with a mean time-averaged (during vacuuming) PM(10) increase of 35 mu g/m(3) relative to background. Peak-to-background PM(10) concentrations exceeded 6 for some experiments and averaged between approximately 3 and 4 for experiments when the vacuum cleaner was switched on.

          Related collections

          Author and article information

          Journal
          J Occup Environ Hyg
          Journal of occupational and environmental hygiene
          1545-9632
          1545-9624
          Apr 2008
          : 5
          : 4
          Affiliations
          [1 ] Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78758, USA. corsi@mail.utexas.edu
          Article
          790382198
          10.1080/15459620801901165
          18247227
          8d102472-e53c-422b-9e54-ae6575e0d25a
          History

          Comments

          Comment on this article