27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase

      research-article
      ,
      Aging Cell
      John Wiley & Sons, Ltd
      Alzheimer’s disease, Neurodegenerative diseases, p53, proteasome, ubiquitin pathway

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In patient with Alzheimer’s disease (AD), deposition of amyloid-beta Aβ, a proteolytic cleavage of amyloid precursor protein (APP) by β-secretase/BACE1, forms senile plaque in the brain. BACE1 activation is caused due to oxidative stresses and dysfunction of ubiquitin–proteasome system (UPS), which is linked to p53 inactivation. As partial suppression of BACE1 attenuates Aβ generation and AD-related pathology, it might be an ideal target for AD treatment. We have shown that both in neurons and in HEK-APP cells, BACE1 is a new substrate of E3-ligase CHIP and an inverse relation exists between CHIP and BACE1 level. CHIP inhibits ectopic BACE1 level by promoting its ubiquitination and proteasomal degradation, thus reducing APP processing; it stabilizes APP in neurons, thus reducing Aβ. CHIP U box domain physically interacts with BACE1; however, both U-box and TPR domain are essential for ubiquitination and degradation of BACE1. Further, BACE1 is a downstream target of p53 and overexpression of p53 decreases BACE1 level. In HEK-APP cells, CHIP is shown to negatively regulate BACE1 promoter through stabilization of p53’s DNA-binding conformation and its binding upon 5′ UTR element (+127 to +150). We have thus discovered that CHIP regulates p53-mediated trans-repression of BACE1 at both transcriptional and post-translational level. We propose that a CHIP–BACE1–p53 feedback loop might control APP stabilization, which could further be utilized for new therapeutic intervention in AD.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          BACE1 is the major beta-secretase for generation of Abeta peptides by neurons.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation.

            Molecular chaperones, ubiquitin ligases and proteasome impairment have been implicated in several neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by accumulation of abnormal protein aggregates (e.g. tau and alpha-synuclein respectively). Here we report that CHIP, an ubiquitin ligase that interacts directly with Hsp70/90, induces ubiquitination of the microtubule associated protein, tau. CHIP also increases tau aggregation. Consistent with this observation, diverse of tau lesions in human postmortem tissue were found to be immunopositive for CHIP. Conversely, induction of Hsp70 through treatment with either geldanamycin or heat shock factor 1 leads to a decrease in tau steady-state levels and a selective reduction in detergent insoluble tau. Furthermore, 30-month-old mice overexpressing inducible Hsp70 show a significant reduction in tau levels. Together these data demonstrate that the Hsp70/CHIP chaperone system plays an important role in the regulation of tau turnover and the selective elimination of abnormal tau species. Hsp70/CHIP may therefore play an important role in the pathogenesis of tauopathies and also represents a potential therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression.

              The molecular mechanism underlying the pathogenesis of the majority of cases of sporadic Alzheimer's disease (AD) is unknown. A history of stroke was found to be associated with development of some AD cases, especially in the presence of vascular risk factors. Reduced cerebral perfusion is a common vascular component among AD risk factors, and hypoxia is a direct consequence of hypoperfusion. Previously we showed that expression of the beta-site beta-amyloid precursor protein (APP) cleavage enzyme 1 (BACE1) gene BACE1 is tightly controlled at both the transcriptional and translational levels and that increased BACE1 maturation contributes to the AD pathogenesis in Down's syndrome. Here we have identified a functional hypoxia-responsive element in the BACE1 gene promoter. Hypoxia up-regulated beta-secretase cleavage of APP and amyloid-beta protein (Abeta) production by increasing BACE1 gene transcription and expression both in vitro and in vivo. Hypoxia treatment markedly increased Abeta deposition and neuritic plaque formation and potentiated the memory deficit in Swedish mutant APP transgenic mice. Taken together, our results clearly demonstrate that hypoxia can facilitate AD pathogenesis, and they provide a molecular mechanism linking vascular factors to AD. Our study suggests that interventions to improve cerebral perfusion may benefit AD patients.
                Bookmark

                Author and article information

                Journal
                Aging Cell
                Aging Cell
                acel
                Aging Cell
                John Wiley & Sons, Ltd (Chichester, UK )
                1474-9718
                1474-9726
                August 2015
                13 March 2015
                : 14
                : 4
                : 595-604
                Affiliations
                School of Biotechnology, Jawaharlal Nehru University New Delhi, 110067, India
                Author notes
                Correspondence, Uttam Pati, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India. Tel.: +0091 11 26704081; fax: +0091 11 26167261; e-mail : uttam@ 123456mail.jnu.ac.in
                Article
                10.1111/acel.12335
                4531073
                25773675
                8d1b11c8-8fec-4da2-add0-33bf7815541b
                © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 January 2015
                Categories
                Original Articles

                Cell biology
                alzheimer’s disease,neurodegenerative diseases,p53,proteasome,ubiquitin pathway
                Cell biology
                alzheimer’s disease, neurodegenerative diseases, p53, proteasome, ubiquitin pathway

                Comments

                Comment on this article