14
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanodelivery and anticancer effect of a limonoid, nimbolide, in breast and pancreatic cancer cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Nimbolide (Nim), a limonoid obtained from the neem tree, Azadirachta indica, has several pharmacological properties, including anticancer effects in different type of cancers. No drug-delivery system has been reported for enhancing the therapeutic application of this novel hydrophobic molecule.

          Methods

          In the present research, poly(lactic- co-glycolic acid) (PLGA) nanoparticles of Nim (Nim-nano) were formulated by nanoprecipitation, characterized for physicochemical properties, and screened for anticancer potential in breast (MCF-7 and MDA-MB-231) and pancreatic (AsPC-1) cancer cell lines.

          Results

          The Nim-nano had a particle size of 183.73±2.22 nm and 221.20±11.03 nm before and after lyophilization, respectively. Cryoprotectants (mannitol and sucrose) significantly inhibited growth in particle size due to lyophilization. The ζ-potential of the Nim-nano was −22.40±4.40 mV. Drug loading and encapsulation efficiency of Nim-nano were 5.25%±1.12% and 55.67%±12.42%, respectively. The Nim-nano exhibited sustained release of Nim for more than 6 days in PBS (pH 7.4) and showed two- to three-fold enhanced cytotoxicity in breast and pancreatic cancer cell lines compared with free Nim.

          Conclusion

          The Nim-nano formulation has great potential for treatment of cancers, such as pancreatic and breast cancer. Further, the PLGA-polymer surface can be modified by conjugation with polyethylene glycol, receptor-binding ligands (eg, folic acid), and other that which may lead to targeted delivery of Nim in the treatment of cancer.

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Polymer conjugates as anticancer nanomedicines.

          The transfer of polymer-protein conjugates into routine clinical use, and the clinical development of polymer-anticancer-drug conjugates, both as single agents and as components of combination therapy, is establishing polymer therapeutics as one of the first classes of anticancer nanomedicines. There is growing optimism that ever more sophisticated polymer-based vectors will be a significant addition to the armoury currently used for cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mediating tumor targeting efficiency of nanoparticles through design.

            Here we systematically examined the effect of nanoparticle size (10-100 nm) and surface chemistry (i.e., poly(ethylene glycol)) on passive targeting of tumors in vivo. We found that the physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their tumor accumulation capacity. Interestingly, the permeation of nanoparticles within the tumor is highly dependent on the overall size of the nanoparticle, where larger nanoparticles appear to stay near the vasculature while smaller nanoparticles rapidly diffuse throughout the tumor matrix. Our results provide design parameters for engineering nanoparticles for optimized tumor targeting of contrast agents and therapeutics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 2)

                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                IJN
                intjnano
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                07 October 2019
                2019
                : 14
                : 8095-8104
                Affiliations
                [1 ]Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Health Sciences University , Clovis, CA, USA
                [2 ]Institute of Pharmacy, Guru Ghasidas University , Bilaspur, CG, India
                Author notes
                Correspondence: Muhammad Delwar Hussain Department of Pharmaceutical and Biomedical Sciences, California Health Sciences University, College of Pharmacy , Mailing address: 120 North Clovis Avenue, Clovis, CA93612, USATel +1 559 369 2715Fax +1 559 473 1487Email dhussain@chsu.edu
                Author information
                http://orcid.org/0000-0003-1063-8203
                Article
                208540
                10.2147/IJN.S208540
                6789415
                31632020
                8d21d6d7-f102-4af7-9b15-996330a3df13
                © 2019 Patra et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 13 March 2019
                : 28 August 2019
                Page count
                Figures: 7, References: 59, Pages: 10
                Categories
                Original Research

                Molecular medicine
                nimbolide,plga,nanoparticles,breast cancer,pancreatic cancer
                Molecular medicine
                nimbolide, plga, nanoparticles, breast cancer, pancreatic cancer

                Comments

                Comment on this article