3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tpl2 Protects Against Fulminant Hepatitis Through Mobilization of Myeloid-Derived Suppressor Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myeloid derived suppressor cells (MDSC) in the liver microenvironment protects against the inflammation-induced liver injury in fulminant hepatitis (FH). However, the molecular mechanism through which MDSC is recruited into the inflamed liver remain elusive. Here we identified a protein kinase Tpl2 as a critical mediator of MDSC recruitment into liver during the pathogenesis of Propionibacterium acnes/LPS-induced FH. Loss of Tpl2 dramatically suppressed MDSC mobilization into liver, leading to exaggerated local inflammation and increased FH-induced mortality. Mechanistically, although the protective effect of Tpl2 for FH-induced mortality was dependent on the presence of MDSC, Tpl2 neither directly targeted myeloid cells nor T cells to regulate FH pathogenesis, but functioned in hepatocytes to mediate the induction of MDSC-attracting chemokine CXCL1 and CXCL2 through modulating IL-25 (also known as IL-17E) signaling. As a consequence, increased MDSC in the inflamed liver specifically restrained the local proliferation of infiltrated pathogenic CD4 + T cells, and thus protected against the inflammation-induced acute liver failure. Together, our findings established Tpl2 as a critical mediator of MDSC recruitment and highlighted the therapeutic potential of Tpl2 for the treatment of FH.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo.

          We have characterized a cytokine produced by Th2 cells, designated as IL-25. Infusion of mice with IL-25 induced IL-4, IL-5, and IL-13 gene expression. The induction of these cytokines resulted in Th2-like responses marked by increased serum IgE, IgG(1), and IgA levels, blood eosinophilia, and pathological changes in the lungs and digestive tract that included eosinophilic infiltrates, increased mucus production, and epithelial cell hyperplasia/hypertrophy. In addition, our studies show that IL-25 induces Th2-type cytokine production by accessory cells that are MHC class II(high), CD11c(dull), and lineage(-). These results suggest that IL-25, derived from Th2 T cells, is capable of amplifying allergic type inflammatory responses by its actions on other cell types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IL-17 family: cytokines, receptors and signaling.

            The interleukin 17 (IL-17) family, a subset of cytokines consisting of IL-17A-F, plays crucial roles in host defense against microbial organisms and in the development of inflammatory diseases. Although IL-17A is the signature cytokine produced by T helper 17 (Th17) cells, IL-17A and other IL-17 family cytokines have multiple sources ranging from immune cells to non-immune cells. The IL-17 family signals via their correspondent receptors and activates downstream pathways that include NFκB, MAPKs and C/EBPs to induce the expression of anti-microbial peptides, cytokines and chemokines. The proximal adaptor Act1 is a common mediator during the signaling of all IL-17 cytokines so far and is thus involved in IL-17 mediated host defense and IL-17-driven autoimmune conditions. This review will give an overview and recent updates on the IL-17 family, the activation and regulation of IL-17 signaling as well as diseases associated with this cytokine family. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC–activated Th2 memory cells

              Interleukin (IL) 25 (IL-17E), a distinct member of the IL-17 cytokine family, plays important roles in evoking T helper type 2 (Th2) cell–mediated inflammation that features the infiltrations of eosinophils and Th2 memory cells. However, the cellular sources, target cells, and underlying mechanisms remain elusive in humans. We demonstrate that human Th2 memory cells expressing distinctive levels of IL-25 receptor (R) are one of the responding cell types. IL-25 promotes cell expansion and Th2 cytokine production when Th2 central memory cells are stimulated with thymic stromal lymphopoietin (TSLP)–activated dendritic cells (DCs), homeostatic cytokines, or T cell receptor for antigen triggering. The enhanced functions of Th2 memory cells induced by IL-25 are associated with sustained expression of GATA-3, c-MAF, and JunB in an IL-4–independent manner. Although keratinocytes, mast cells, eosinophils, and basophils express IL-25 transcripts, activated eosinophils and basophils from normal and atopic subjects were found to secrete bioactive IL-25 protein, which augments the functions of Th2 memory cells. Elevated expression of IL-25 and IL-25R transcripts was observed in asthmatic lung tissues and atopic dermatitis skin lesions, linking their possible roles with exacerbated allergic disorders. Our results provide a plausible explanation that IL-25 produced by innate effector eosinophils and basophils may augment the allergic inflammation by enhancing the maintenance and functions of adaptive Th2 memory cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                20 August 2019
                2019
                : 10
                : 1980
                Affiliations
                [1] 1The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University , Suzhou, China
                [2] 2CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
                [3] 3Department of Medical Oncology, Fudan University Shanghai Cancer Center , Shanghai, China
                Author notes

                Edited by: Sergio C. Oliveira, Federal University of Minas Gerais, Brazil

                Reviewed by: Nagarkatti Prakash, University of South Carolina, United States; Patricia Lalor, University of Birmingham, United Kingdom

                *Correspondence: Mingzhu Huang mingzhuhuang0718@ 123456163.com

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.01980
                6710335
                31481966
                8d27e459-d8a1-4a1d-8b83-d5865749c89d
                Copyright © 2019 Xu, Pei, Wang, Liu, Qian, Huang, Zhang and Xiao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 March 2019
                : 05 August 2019
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 42, Pages: 12, Words: 8102
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Immunology
                Original Research

                Immunology
                hepatitis,myeloid-derive suppressor cells (mdscs),tpl2,il-25,chemokine
                Immunology
                hepatitis, myeloid-derive suppressor cells (mdscs), tpl2, il-25, chemokine

                Comments

                Comment on this article