46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiation-driven outflows from and radiative support in dusty tori of active galactic nuclei

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei, but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Infrared (IR) radiation pressure on dust can play a significant role in shaping the torus, yet the separation of hydrodynamic evolution from radiative transfer (RT) in previous work on radiation-supported tori precluded a self-consistent picture. Here we present radiative hydrodynamics simulations of an initially smooth torus; we solve the hydrodynamics equations, the time-dependent multi-angle group IR RT equation, and the time-independent ultraviolet (UV) RT equation. IR radiation is highly anisotropic, leaving primarily through the central hole of the torus. The inner edge of the torus exhibits a break in axisymmetry under the influence of radiation and differential rotation. In addition, UV radiation pressure on dust launches a strong wind along the inner edge of the torus with speed \(\sim 5.3\times10^3 (M/10^7 M_\odot)^{1/4} [L_\mathrm{UV}/(0.1 L_\mathrm E)]^{1/4} \mathrm{km}\,\mathrm s^{-1}\) and mass loss rate \(\sim 0.12 (M/10^7 M_\odot)^{3/4} [L_\mathrm{UV}/(0.1 L_\mathrm E)]^{3/4} M_\odot\,\mathrm{yr}^{-1}\), where \(M\), \(L_\mathrm{UV}\), and \(L_\mathrm E\) are the mass, UV luminosity, and Eddington luminosity of the central object respectively; these values are comparable to those inferred from observations.

          Related collections

          Author and article information

          Journal
          1511.00333

          Galaxy astrophysics
          Galaxy astrophysics

          Comments

          Comment on this article