+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found

      Quorum sensing dependent phenotypes and their molecular mechanisms in Campylobacterales

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Quorum sensing comprises the mechanism of communication between numerous bacteria via small signalling molecules, termed autoinducers (AI). Using quorum sensing, bacteria can regulate the expression of multiple genes involved in virulence, toxin production, motility, chemotaxis and biofilm formation, thus contributing to adaptation as well as colonisation. The current understanding of the role of quorum sensing in the lifecycle of Campylobacterales is still incomplete. Campylobacterales belong to the class of Epsilonproteobacteria representing a physiologically and ecologically diverse group of bacteria that are rather distinct from the more commonly studied Proteobacteria, such as Escherichia and Salmonella. This review summarises the recent knowledge on distribution and production of AI molecules, as well as possible quorum sensing dependent regulation in the mostly investigated species within the Campylobacterales group: Campylobacter jejuni and Helicobacter pylori.

          Related collections

          Most cited references 51

          • Record: found
          • Abstract: found
          • Article: not found

          Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi.

          Different species of bacteria were tested for production of extracellular autoinducer-like activities that could stimulate the expression of the luminescence genes in Vibrio harveyi. Several species of bacteria, including the pathogens Vibrio cholerae and Vibrio parahaemolyticus, were found to produce such activities. Possible physiological roles for the two V. harveyi detection-response systems and their joint regulation are discussed.
            • Record: found
            • Abstract: found
            • Article: not found

            Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence.

            Density-dependent expression of luminescence in Vibrio harveyi is regulated by the concentration of an extracellular signal molecule (autoinducer) in the culture medium. A recombinant clone that restored function to one class of spontaneous dim mutants was found to encode functions necessary for the synthesis of, and response to, a signal molecule. Sequence analysis of the region encoding these functions revealed three open reading frames, two (luxL and luxM) that are required for production of an autoinducer substance and a third (luxN) that is required for response to this signal substance. The LuxL and LuxM proteins are not similar in amino acid sequence to other proteins in the database, but the LuxN protein contains regions of sequence resembling both the histidine protein kinase and the response regulator domains of the family of two-component, signal transduction proteins. The phenotypes of mutants with luxL, luxM and luxN defects indicated that an additional signal-response system controlling density-dependent expression of luminescence remains to be identified.
              • Record: found
              • Abstract: found
              • Article: not found

              Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms.

              Campylobacter jejuni has long been recognized as a cause of bacterial food-borne illness, and surprisingly, it remains the most prevalent bacterial food-borne pathogen in the industrial world to date. Natural reservoirs for this Gram-negative, spiral-shaped bacterium are wild birds, whose intestines offer a suitable biological niche for the survival and dissemination of C. jejuni Chickens become colonized shortly after birth and are the most important source for human infection. In the last decade, effective intervention strategies to limit infections caused by this elusive pathogen were hindered mainly because of a paucity in understanding the virulence mechanisms of C. jejuni and in part, unavailability of an adequate animal model for the disease. However, recent developments in deciphering molecular mechanisms of virulence of C. jejuni made it clear that C. jejuni is a unique pathogen, being able to execute N-linked glycosylation of more than 30 proteins related to colonization, adherence, and invasion. Moreover, the flagellum is not only depicted to facilitate motility but as well secretion of Campylobacter invasive antigens (Cia). The only toxin of C. jejuni, the so-called cytolethal distending toxin (CdtA,B,C), seems to be important for cell cycle control and induction of host cell apoptosis and has been recognized as a major pathogenicity-associated factor. In contrast to other diarrhoea-causing bacteria, no other classical virulence factors have yet been identified in C. jejuni. Instead, host factors seem to play a major role for pathogenesis of campylobacteriosis of man. Indeed, several lines of evidence suggest exploitation of different adaptation strategies by this pathogen depending on its requirement, whether to establish itself in the natural avian reservoir or during the course of human infection. (c) 2009 Elsevier GmbH. All rights reserved.

                Author and article information

                European Journal of Microbiology and Immunology
                Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
                1 March 2012
                : 2
                : 1
                : 50-60
                [ 1 ] Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
                [ 2 ] Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
                [ 3 ] School for Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
                [ 4 ] Institute of Food Hygiene, Freie Universität Berlin, Königsweg 69, D-14163, Berlin, Germany
                Author notes


                Comment on this article