66
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Association Mapping of Quantitative Traits in Outbred Mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent developments in high-density genotyping and statistical analysis methods that have enabled genome-wide association studies in humans can also be applied to outbred mouse populations. Increased recombination in outbred populations is expected to provide greater mapping resolution than traditional inbred line crosses, improving prospects for identifying the causal genes. We carried out genome-wide association mapping by using 288 mice from a commercially available outbred stock; NMRI mice were genotyped with a high-density single-nucleotide polymorphism array to map loci influencing high-density lipoprotein cholesterol, systolic blood pressure, triglyceride levels, glucose, and urinary albumin-to-creatinine ratios. We found significant associations ( P < 10 −5) with high-density lipoprotein cholesterol and identified Apoa2 and Scarb1, both of which have been previously reported, as candidate genes for these associations. Additional suggestive associations ( P < 10 −3) identified in this study were also concordant with published quantitative trait loci, suggesting that we are sampling from a limited pool of genetic diversity that has already been well characterized. These findings dampen our enthusiasm for currently available commercial outbred stocks as genetic mapping resources and highlight the need for new outbred populations with greater genetic diversity. Despite the lack of novel associations in the NMRI population, our analysis strategy illustrates the utility of methods that could be applied to genome-wide association studies in humans.

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase.

          We present a statistical model for patterns of genetic variation in samples of unrelated individuals from natural populations. This model is based on the idea that, over short regions, haplotypes in a population tend to cluster into groups of similar haplotypes. To capture the fact that, because of recombination, this clustering tends to be local in nature, our model allows cluster memberships to change continuously along the chromosome according to a hidden Markov model. This approach is flexible, allowing for both "block-like" patterns of linkage disequilibrium (LD) and gradual decline in LD with distance. The resulting model is also fast and, as a result, is practicable for large data sets (e.g., thousands of individuals typed at hundreds of thousands of markers). We illustrate the utility of the model by applying it to dense single-nucleotide-polymorphism genotype data for the tasks of imputing missing genotypes and estimating haplotypic phase. For imputing missing genotypes, methods based on this model are as accurate or more accurate than existing methods. For haplotype estimation, the point estimates are slightly less accurate than those from the best existing methods (e.g., for unrelated Centre d'Etude du Polymorphisme Humain individuals from the HapMap project, switch error was 0.055 for our method vs. 0.051 for PHASE) but require a small fraction of the computational cost. In addition, we demonstrate that the model accurately reflects uncertainty in its estimates, in that probabilities computed using the model are approximately well calibrated. The methods described in this article are implemented in a software package, fastPHASE, which is available from the Stephens Lab Web site.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Rare Variants Create Synthetic Genome-Wide Associations

            Introduction Efforts to fine map the causal variants responsible for genome-wide association studies (GWAS) signals have been largely predicated on the common disease common variant theory, postulating a common variant as the culprit for observed associations. This has led to extensive resequencing efforts that have been largely unsuccessful [1]–[5]. Here, we explore the possibility that part of the reason for this may be that the disease class causing an observed association may consist of multiple low-frequency variants across large regions of the genome—a phenomenon we call synthetic association. For convenience, these less common variants will be referred to here as “rare,” but we emphasize that we use this term loosely, only to refer to variants less common than those routinely studied in GWAS. The basic idea of how synthetic associations emerge in this model is illustrated in Figure 1, which shows how rare variants, by chance, can occur disproportionately in some parts of a gene genealogy. Any variant “higher up in the genealogy” that partitions those parts of the genealogy containing more disease variants than average will be identified as disease-associated. It is well appreciated that a noncausal variant will show association with a causal variant if the two are in strong linkage disequilibrium (LD). We use the previously introduced term synthetic association [6], however, to describe how such indirect association can occur between a common variant and at least one and possibly many rarer causal variants. Using the term synthetic as opposed to indirect emphasizes that the properties of the association signal are very different when the responsible variant or variants are much less frequent than the marker that carries the signal, as we detail below. 10.1371/journal.pbio.1000294.g001 Figure 1 Example genealogies showing causal variants and the strongest association for a common variant. (A) A genealogy with 10,000 original haplotypes was generated with 3,000 cases and 3,000 controls, genotype relative risk (γ) = 4, and nine causal variants. The branches containing the strongest synthetic association are indicated in blue. The branches containing the rare causal variants are in red. (B) A second genealogy was generated using the same parameters. These genealogies demonstrate two scenarios with genome-wide significant synthetic associations: the first (upper genealogy) had a high risk allele frequency (RAF = 0.49), and the second (lower genealogy) had a low RAF (0.08). To assess the tendency of rare disease-causing variants to create synthetic signals of association that are credited to single polymorphisms that are much more common in the population than the causal variants, we have simulated 10,000 haplotypes based on a coalescent model in a region either with or without recombination (Materials and Methods). We assumed that gene variants that influence disease have an allele frequency between 0.005 and 0.02, which is generally below the range of reliable detection (either by inclusion or indirect representation) using the genome-wide association platforms currently in use. We assumed a baseline probability of disease of φ for individuals with none of the rare genetic risk factors. The presence of at least one rare risk allele at the locus increased the probability of disease from φ to γ. We considered two values of φ (0.01, 0.1) and chose values of the penetrance γ such that the genotypic relative risk (GRR) of the rare causal variants varied incrementally between 2 and 6, where GRR is the ratio γ/φ. These values were chosen to explore the space around a GRR of 4, a threshold above which consistent linkage signals would be expected [7]. We simulated scenarios with one, three, five, seven, and nine rare causal variants. Results Across the conditions we have studied, not only is it possible to achieve genome-wide significance for common variants when one or more rare variants are the only contributors to disease, it is often the likely outcome (Figure 2). Overall, 30% of the simulations were able to detect an association with a common SNP at genome-wide significance (p 5%, Hardy-Weinberg equilibrium p-value >1×10−6, SNP call rate >95%), using the PLINK software [40]. For the sickle cell anemia GWAS, we compared 194 cases and 7,407 controls of inferred African ancestry via multidimensional scaling, with a genomic control inflation factor of 1.01. For hearing loss, we performed a GWAS on 418 cases and 6,892 control subjects, all of whom were of genetically inferred European ancestry via multidimensional scaling, with a genomic control inflation factor of 1.02.
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide genetic association of complex traits in heterogeneous stock mice.

              Difficulties in fine-mapping quantitative trait loci (QTLs) are a major impediment to progress in the molecular dissection of complex traits in mice. Here we show that genome-wide high-resolution mapping of multiple phenotypes can be achieved using a stock of genetically heterogeneous mice. We developed a conservative and robust bootstrap analysis to map 843 QTLs with an average 95% confidence interval of 2.8 Mb. The QTLs contribute to variation in 97 traits, including models of human disease (asthma, type 2 diabetes mellitus, obesity and anxiety) as well as immunological, biochemical and hematological phenotypes. The genetic architecture of almost all phenotypes was complex, with many loci each contributing a small proportion to the total variance. Our data set, freely available at http://gscan.well.ox.ac.uk, provides an entry point to the functional characterization of genes involved in many complex traits.

                Author and article information

                Journal
                G3 (Bethesda)
                ggg
                ggg
                ggg
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                1 February 2012
                February 2012
                : 2
                : 2
                : 167-174
                Affiliations
                [* ]The Jackson Laboratory, Bar Harbor, Maine 04609
                []Novartis Institutes for BioMedical Research and Novartis Pharmaceutical Corporation, East Hanover, New Jersey 07936
                []Novartis Pharmaceutical Corporation, Basel, Switzerland 4033
                [§ ]Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
                Author notes

                Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001792/-/DC1

                [1]

                These authors contributed equally to this work.

                [2 ]Corresponding author: Novartis Institutes for BioMedical Research and Novartis Pharmaceutical Corporation, 1 Health Plaza, Bldg 437, Room 4331, East Hanover, NJ 07936. E-mail: keith.dipetrillo@ 123456novartis.com
                Article
                GGG_001792
                10.1534/g3.111.001792
                3284324
                22384395
                8d628b71-ec3d-4591-9110-36174ed2f160
                Copyright © 2012 Zhang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 June 2011
                : 6 October 2011
                Categories
                Mouse Genetic Resources

                Genetics
                mouse genetic resource
                Genetics
                mouse genetic resource

                Comments

                Comment on this article

                Related Documents Log