69
views
0
recommends
+1 Recommend
0 collections
    12
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Morphological and molecular characterization of a marine fish trypanosome from South Africa, including its development in a leech vector

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Trypanosomes are ubiquitous blood parasites of marine and freshwater fishes, typically transmitted by aquatic leeches. Phylogenetic studies have been dominated by examples derived from freshwater fishes, with few marine representatives. Furthermore, life cycle studies on marine fish trypanosomes have focused on those of the northern hemisphere. In this investigation, we have examined the life cycle and molecular taxonomy of a marine fish trypanosome from South Africa.

          Methods

          To locate trypanosome stages, leeches were removed from fishes captured on the west and south coasts of South Africa, and fish blood films and leech squashes were Giemsa-stained and screened; leeches were also examined histologically. To determine whether trypanosome stages in fishes and leeches were of the same genotype, DNA was extracted from Giemsa-stained fish blood films and leech squashes, and from fish whole blood. Fragments of the 18S rRNA gene were amplified by PCR using trypanosome-specific primers and sequenced. Resulting sequence data were compared with each other and with published trypanosome 18S rDNA sequences, and used for phylogenetic analysis.

          Results

          Trypanosomes were detected in blood films from fishes of the families Clinidae, Blenniidae and Gobiidae. The flagellates ranged in size and staining properties within the films and across fish hosts. In squashes and histological sections of adult and juvenile leeches, identified as Zeylanicobdella arugamensis, trypanosome developmental stages were predominantly slender epimastigotes. Sequence data showed that trypanosomes derived from fishes were identical, irrespective of whether they were small or large forms; sequences derived largely from leech epimastigotes were also identical to those obtained from fish trypanosomes. Fish and leech trypanosome sequences fell into a marine fish aquatic clade, and aligned most closely with two trypanosome sequences from marine fishes off Norway.

          Conclusions

          Combined morphological and molecular methods indicate that the trypanosomes examined here represent a single pleomorphic species, rather than the three species described originally. This species is identified as Trypanosoma nudigobii Fantham, 1919 with the leech Z. arugamensis as its vector, and T. capigobii Fantham, 1919 and T. blenniclini Fantham, 1930 are regarded as junior synonyms of the species. Phylogenetic analysis establishes its affinity with marine fish trypanosomes off Norway.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa.

          Sequences of the small rRNA genes and partial sequences of the large rRNA genes were obtained by PCR amplification from a variety of vertebrate trypanosomes. The trypanosome species and hosts included Trypanosoma avium from a bird, T. rotatorium from an amphibian, T. boissoni from an elasmobranch, T. triglae from a marine teleost and T. carassii from a freshwater teleost. Phylogenetic relationships among these species and other representatives of the family Trypanosomatidae were inferred using maximum likelihood, maximum parsimony and evolutionary parsimony. The trypanosomatid tree was rooted using rRNA sequences from two species from the suborder Bodonina. All methods showed that the mammalian parasite, Trypanosoma brucei, constitutes the earliest divergent branch. The remaining trypanosomes formed a monophyletic group. Within this group, the bird trypanosome was grouped with T. cruzi, while the elasmobranch trypanosome and the two fish trypanosome species formed a group with an affinity to T. rotatorium. Our results provide no evidence for co-evolution of trypanosomatids and their hosts, either vertebrate or invertebrate. This suggests that evolution of trypanosomatids was accompanied by secondary acquisitions of hosts and habitats.
            • Record: found
            • Abstract: not found
            • Article: not found

            The life cycle of Trypanosoma murmanensis Nikitin.

            R A Khan (1976)
              • Record: found
              • Abstract: found
              • Article: not found

              A new fish haemogregarine from South Africa and its suspected dual transmission with trypanosomes by a marine leech.

              Twenty two percent (22/98) of intertidal fishes of 10 species captured in South Africa at Koppie Alleen, De Hoop Nature Reserve (south coast) and Mouille Point, Cape Town (west coast), harboured single or combined infections of haemogregarines, trypanosomes and an intraerythrocytic parasite resembling a Haemohormidium sp. The haemogregarines included the known species Haemogregarina (sensu lato) bigemina (Laveran et Mesnil, 1901) Siddall, 1995 and Haemogregarina (sensu lato) koppiensis Smit et Davies, 2001, while Haemogregarina (sensu lato) curvata sp. n. was observed in Clinus cottoides Valenciennes and Parablennius cornutus (L.) at Koppie Alleen. This last haemogregarine is characterised particularly by its distinctly curved gamonts. Also at Koppie Alleen, squash and histological preparations of 9/10 leeches, Zeylanicobdella arugamensis De Silva, 1963, taken from infected C. cottoides and P. cornutus contained developmental stages of H. curvata and/or trypanosomes, but these were absent from haematophagous gnathiid isopods (Gnathia africana Barnard, 1914) taken from infected fishes. It is suspected that Z. arugamensis transmits the haemogregarine and trypanosomes simultaneously between fishes, a double event unreported previously from the marine environment.

                Author and article information

                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2014
                24 January 2014
                : 7
                : 50
                Affiliations
                [1 ]Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
                [2 ]Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
                [3 ]Water Research Group (Ecology), Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Potchefstroom 2520, South Africa
                [4 ]School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
                Article
                1756-3305-7-50
                10.1186/1756-3305-7-50
                3904685
                24460725
                8d726fad-6b9a-4252-8988-075b9bef5bf7
                Copyright © 2014 Hayes et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 19 September 2013
                : 11 December 2013
                Categories
                Research

                Parasitology
                trypanosomes,fishes,life cycle,trypanosoma nudigobii,18s rdna sequences,leeches
                Parasitology
                trypanosomes, fishes, life cycle, trypanosoma nudigobii, 18s rdna sequences, leeches

                Comments

                Comment on this article

                Related Documents Log