2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluating Entity Disambiguation and the Role of Popularity in Retrieval-Based NLP

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retrieval is a core component for open-domain NLP tasks. In open-domain tasks, multiple entities can share a name, making disambiguation an inherent yet under-explored problem. We propose an evaluation benchmark for assessing the entity disambiguation capabilities of these retrievers, which we call Ambiguous Entity Retrieval (AmbER) sets. We define an AmbER set as a collection of entities that share a name along with queries about those entities. By covering the set of entities for polysemous names, AmbER sets act as a challenging test of entity disambiguation. We create AmbER sets for three popular open-domain tasks: fact checking, slot filling, and question answering, and evaluate a diverse set of retrievers. We find that the retrievers exhibit popularity bias, significantly under-performing on rarer entities that share a name, e.g., they are twice as likely to retrieve erroneous documents on queries for the less popular entity under the same name. These experiments on AmbER sets show their utility as an evaluation tool and highlight the weaknesses of popular retrieval systems.

          Related collections

          Author and article information

          Journal
          12 June 2021
          Article
          2106.06830
          8d727288-d069-4a2b-aab3-c7c1d084139e

          http://creativecommons.org/licenses/by/4.0/

          Custom metadata
          cs.CL cs.LG

          Theoretical computer science, Artificial intelligence

          Comments

          Comment on this article