+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First record of Harpellales, Orphellales (Kickxellomycotina) and Amoebidiales (Mesomycetozoea) from Bulgaria, including a new species of Glotzia

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          This paper presents the results obtained from a short survey performed in Bulgaria, southeast Europe, where the trichomycetes (sensu lato), an ecological group of arthropod gut endosymbionts, were previously completely unknown. The present study initiates the comprehension of these cryptic organisms, members of the Kickxellomycotina ( Harpellales , Orphellales ) and the Mesomycetozoea ( Amoebidiales ), in this Balkan country. Eighteen new geographic records for Bulgaria are reported, including 10 species of Harpellales , three species of Orphellales and five species of Amoebidiales . Within the Harpellales , the species Glotzia balkanensis sp. nov. is described. This new species is most related to the rare species G. centroptili Gauthier ex Manier & Lichtw. and G. stenospora White & Lichtw., but is differentiated by spore and thallial characteristics. Photographs are provided and biogeographic implications of these records are discussed.

          Related collections

          Most cited references 66

          • Record: found
          • Abstract: found
          • Article: not found

          Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits.

          Based on an overview of progress in molecular systematics of the true fungi (Fungi/Eumycota) since 1990, little overlap was found among single-locus data matrices, which explains why no large-scale multilocus phylogenetic analysis had been undertaken to reveal deep relationships among fungi. As part of the project "Assembling the Fungal Tree of Life" (AFTOL), results of four Bayesian analyses are reported with complementary bootstrap assessment of phylogenetic confidence based on (1) a combined two-locus data set (nucSSU and nucLSU rDNA) with 558 species representing all traditionally recognized fungal phyla (Ascomycota, Basidiomycota, Chytridiomycota, Zygomycota) and the Glomeromycota, (2) a combined three-locus data set (nucSSU, nucLSU, and mitSSU rDNA) with 236 species, (3) a combined three-locus data set (nucSSU, nucLSU rDNA, and RPB2) with 157 species, and (4) a combined four-locus data set (nucSSU, nucLSU, mitSSU rDNA, and RPB2) with 103 species. Because of the lack of complementarity among single-locus data sets, the last three analyses included only members of the Ascomycota and Basidiomycota. The four-locus analysis resolved multiple deep relationships within the Ascomycota and Basidiomycota that were not revealed previously or that received only weak support in previous studies. The impact of this newly discovered phylogenetic structure on supraordinal classifications is discussed. Based on these results and reanalysis of subcellular data, current knowledge of the evolution of septal features of fungal hyphae is synthesized, and a preliminary reassessment of ascomal evolution is presented. Based on previously unpublished data and sequences from GenBank, this study provides a phylogenetic synthesis for the Fungi and a framework for future phylogenetic studies on fungi.
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular phylogeny of Zygomycota based on EF-1alpha and RPB1 sequences: limitations and utility of alternative markers to rDNA.

            Earlier molecular phylogenetic analyses based on nuclear small subunit ribosomal DNA (nSSU rDNA) suggest that the Zygomycota are polyphyletic within the Chytridiomycota. However, these analyses failed to resolve almost all interordinal relationships among basal fungi (Chytridiomycota and Zygomycota), due to lack of sufficient characters within the nSSU rDNA. To further elucidate the higher-level phylogeny of Zygomycota, we have sequenced partial RPB1 (DNA dependent RNA polymerase II largest subunit) and EF-1alpha (translation elongation factor 1 alpha) genes from 10 and 3 zygomycete fungi, respectively. Independent molecular phylogenetic analyses were performed based on each sequence by distance and maximum likelihood methods. Although deep phylogenetic relationships among basal fungi still remain poorly resolved using either gene, the RPB1-based phylogeny identified a novel monophyletic clade consisting of the Dimargaritales, Harpellales, and Kickxellales. This result suggests that regularly formed septa (cross walls that divide hyphae into segments) with a lenticular cavity are plesiomorphic for this clade, and indicates the importance of septal pore ultrastructure in zygomycete phylogeny. In addition, a peculiar mucoralean genus Mortierella, which was considered to be distantly related to the other Mucorales based on previous nSSU rDNA analyses, was resolved as the basal most divergence within the Mucorales, consistent with traditional phenotypic-based taxonomy. Although the taxa included in our analysis are restricted, the monophyly of each order suggested by nSSU rDNA phylogeny is supported by the present RPB1-based analysis. These results support the potential use of RPB1 as an alternative marker for fungal phylogenetic studies. Conversely, the overall fungal phylogeny based on EF-1alpha sequence is poorly resolved. A comparison of numbers of observed substitutions versus inferred substitutions within EF-1alpha indicates that this gene is much more saturated than RPB1. This result suggests that the EF-1alpha gene is unsuitable for resolving higher-level phylogenetic relationships within the Fungi.
              • Record: found
              • Abstract: not found
              • Book: not found

              Balkan Biodiversity


                Author and article information

                Pensoft Publishers
                27 May 2020
                : 67
                : 55-80
                [1 ] Unitat de Botànica, Dept. Biologia Animal, Biologia Vegetal i d’Ecologia. Fac. Biociènces. Universitat Autònoma de Barcelona. 08193-Bellaterra (Barcelona), Spain Universitat Autònoma de Barcelona Barcelona Spain
                [2 ] Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences. Sofia, Bulgaria Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences Sofia Bulgaria
                Author notes
                Corresponding author: Laia Guàrdia Valle ( laia.guardia@ 123456uab.cat )

                Academic editor: T. Lumbsch

                Laia Guàrdia Valle, Desislava Stoianova

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Research Article


                Comment on this article