33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reduction criterion of separability and limits for a class of distillation protocols

      ,
      Physical Review A

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mixed State Entanglement and Quantum Error Correction

            Entanglement purification protocols (EPP) and quantum error-correcting codes (QECC) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a mixed state M shared by two parties; with a QECC, an arbi- trary quantum state \(|\xi\rangle\) can be transmitted at some rate Q through a noisy channel \(\chi\) without degradation. We prove that an EPP involving one- way classical communication and acting on mixed state \(\hat{M}(\chi)\) (obtained by sharing halves of EPR pairs through a channel \(\chi\)) yields a QECC on \(\chi\) with rate \(Q=D\), and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts \(D_1(M)\) and \(D_2(M)\) that can be locally distilled from it by EPPs using one- and two-way classical communication respectively, and give an exact expression for \(E(M)\) when \(M\) is Bell-diagonal. While EPPs require classical communica- tion, QECCs do not, and we prove Q is not increased by adding one-way classical communication. However, both D and Q can be increased by adding two-way com- munication. We show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable transmission of quantum states if two-way communication is available, but cannot be used if only one-way com- munication is available. We exhibit a family of codes based on universal hash- ing able toachieve an asymptotic \(Q\) (or \(D\)) of 1-S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5-bit single- error-correcting quantum block code. We prove that {\em iff} a QECC results in high fidelity for the case of no error the QECC can be recast into a form where the encoder is the matrix inverse of the decoder.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states

                Bookmark

                Author and article information

                Journal
                PLRAAN
                Physical Review A
                Phys. Rev. A
                1050-2947
                1094-1622
                June 1999
                June 1999
                : 59
                : 6
                : 4206-4216
                Article
                10.1103/PhysRevA.59.4206
                8d8583a6-b67d-4797-b30b-6ae31c0122a9
                © 1999

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article