26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tertiary amine synthesis via reductive coupling of amides with Grignard reagents†

      research-article
      a , a ,
      Chemical Science
      Royal Society of Chemistry

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new iridium catalyzed reductive coupling reaction of Grignard reagents and tertiary amides affording functionalised tertiary amine products is described.

          Abstract

          A new iridium catalyzed reductive coupling reaction of Grignard reagents and tertiary amides affording functionalised tertiary amine products via an efficient and technically-simple one-pot, two-stage experimental protocol, is reported. The reaction – which can be carried out on gram-scale using as little as 1 mol% Vaska's complex [IrCl(CO)(PPh 3) 2] and TMDS as the terminal reductant for the initial reductive activation step – tolerates a broad range of tertiary amides from (hetero)aromatic to aliphatic (branched, unbranched and formyl) and a wide variety of alkyl (linear, branched), vinyl, alkynyl and (hetero)aryl Grignard reagents. The new methodology has been applied directly to bioactive molecule synthesis and the high chemoselectivity of the reductive coupling of amide has been exploited in late stage functionalization of drug molecules. This reductive functionalisation of tertiary amides provides a new and practical solution to tertiary amine synthesis.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Black pepper and its pungent principle-piperine: a review of diverse physiological effects.

          Black pepper (Piper nigrum) is one of the most widely used among spices. It is valued for its distinct biting quality attributed to the alkaloid, piperine. Black pepper is used not only in human dietaries but also for a variety of other purposes such as medicinal, as a preservative, and in perfumery. Many physiological effects of black pepper, its extracts, or its major active principle, piperine, have been reported in recent decades. Dietary piperine, by favorably stimulating the digestive enzymes of pancreas, enhances the digestive capacity and significantly reduces the gastrointestinal food transit time. Piperine has been demonstrated in in vitro studies to protect against oxidative damage by inhibiting or quenching free radicals and reactive oxygen species. Black pepper or piperine treatment has also been evidenced to lower lipid peroxidation in vivo and beneficially influence cellular thiol status, antioxidant molecules and antioxidant enzymes in a number of experimental situations of oxidative stress. The most far-reaching attribute of piperine has been its inhibitory influence on enzymatic drug biotransforming reactions in the liver. It strongly inhibits hepatic and intestinal aryl hydrocarbon hydroxylase and UDP-glucuronyl transferase. Piperine has been documented to enhance the bioavailability of a number of therapeutic drugs as well as phytochemicals by this very property. Piperine's bioavailability enhancing property is also partly attributed to increased absorption as a result of its effect on the ultrastructure of intestinal brush border. Although initially there were a few controversial reports regarding its safety as a food additive, such evidence has been questionable, and later studies have established the safety of black pepper or its active principle, piperine, in several animal studies. Piperine, while it is non-genotoxic, has in fact been found to possess anti-mutagenic and anti-tumor influences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides.

            The development of efficient and selective transformations is crucial in synthetic chemistry as it opens new possibilities in the total synthesis of complex molecules. Applying such reactions to the synthesis of ketones is of great importance, as this motif serves as a synthetic handle for the elaboration of numerous organic functionalities. In this context, we report a general and chemoselective method based on an activation/addition sequence on secondary amides allowing the controlled isolation of structurally diverse ketones and ketimines. The generation of a highly electrophilic imidoyl triflate intermediate was found to be pivotal in the observed exceptional functional group tolerance, allowing the facile addition of readily available Grignard and diorganozinc reagents to amides, and avoiding commonly observed over-addition or reduction side reactions. The methodology has been applied to the formal synthesis of analogues of the antineoplastic agent Bexarotene and to the rapid and efficient synthesis of unsymmetrical diketones in a one-pot procedure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs.

              PCP or phencyclidine was discovered in 1956 and soon became a popular street drug. Dissociatives including PCP, ketamine, and dextromethorphan have been used non-medically for their mind-altering effects for over 60 years. Many of these compounds have also been used clinically and in legitimate research. At least 14 derivatives of PCP were sold for non-medical and illict use from the late 1960s until the 1990s. With the advent of the Internet, the drug market underwent a dramatic evolution. While initially gray-market chemical vendors offering dextromethorphan and ketamine thrived, most recently the market has shifted to legal high and online-based research chemical vendors. Starting with the first dissociative research chemical, 4-MeO-PCP in 2008, the dissociative research chemical market has rapidly evolved and currently comprises at least 12 dissociatives, almost half of which were unknown in the scientific literature prior to their introduction. Several of these, including methoxetamine, have reached widespread use internationally. A historical account of non-medical use of over 30 dissociative compounds was compiled from a diverse collection of sources. The first complete portrait of this underground market is presented along with the relevant legal, technological, and scientific developments which have driven its evolution.
                Bookmark

                Author and article information

                Journal
                Chem Sci
                Chem Sci
                Chemical Science
                Royal Society of Chemistry
                2041-6520
                2041-6539
                1 November 2017
                11 September 2017
                : 8
                : 11
                : 7492-7497
                Affiliations
                [a ] Department of Chemistry , Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , UK . Email: darren.dixon@ 123456chem.ox.ac.uk
                Author information
                http://orcid.org/0000-0001-9577-9704
                http://orcid.org/0000-0003-2456-5236
                Article
                c7sc03613b
                10.1039/c7sc03613b
                5676097
                29163902
                8d88c5df-fdc4-4c9b-a0b1-20c618d16bbf
                This journal is © The Royal Society of Chemistry 2017

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 August 2017
                : 9 September 2017
                Categories
                Chemistry

                Notes

                †Electronic supplementary information (ESI) available: Experimental procedures, spectroscopic data, copies of 1H and 13C NMR spectra and crystallographic data. CCDC 1552384. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03613b


                Comments

                Comment on this article