+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual-Grafting of Microcrystalline Cellulose by Tea Polyphenols and Cationic ε-Polylysine to Tailor a Structured Antimicrobial Soy-Based Emulsion for 3D Printing


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          An imperative processing way to produce 3D printed structures with enhanced multifunctional properties is printing inks in the form of a gel-like colloidal emulsion. The surface-modified microcrystalline cellulose (MCC) is an excipient of outstanding merit as a particulate emulsifier to manufacture a stable Pickering emulsion gel. The tuning of the MCC structure by cationic antimicrobial compounds, such as ε-polylysine (ε-PL), can offer a surface activity with an antimicrobial effect. However, the MCC/ε-PL lacks the appropriate emulsifying ability due to the development of electrostatic complexes. To overcome this challenge, (i) a surface-active MCC conjugate was synthesized by a sustainable dual-grafting technique (ii) to produce a highly stable therapeutic soy-based Pickering emulsion gel (iii) for potential application in 3D printing. In this regard, the tea polyphenols were initially introduced into MCC by the free-radical grafting method to decrease the charge density of anionic MCC. Then, the antioxidative MCC- g-tea polyphenols were reacted by ε-PL to produce a dual-grafted therapeutic MCC conjugate (micro-biosurfactant), stabilizing the soy-based emulsion system. The results indicated that the dual-grafted micro-biosurfactant formed a viscoelastic and thixotropic soy-based emulsion gel with reduced droplet size and long-term stability. Besides, there was an improvement in the interfacial adsorption features of soy–protein particles after micro-biosurfactant incorporation, where the interfacial pressure and surface dilatational viscoelastic moduli were enhanced. Consequently, it was revealed that the therapeutic Pickering emulsion gel was more suitable to manufacture a well-defined 3D architecture with high resolution and retained permanent deformation after unloading (i.e., a recoverable matrix). This work established that the modification of the MCC backbone by tea polyphenols and ε-PL advances its bioactive properties and emulsifying performance, which finally obtains a soy-based 3D printed structure with noteworthy mechanical strength.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Antibiotic resistance-the need for global solutions.

          The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
            • Record: found
            • Abstract: not found
            • Article: not found


              • Record: found
              • Abstract: not found
              • Article: not found

              Fundamentals and applications of 3D printing for novel materials


                Author and article information

                ACS Appl Mater Interfaces
                ACS Appl Mater Interfaces
                ACS Applied Materials & Interfaces
                American Chemical Society
                27 April 2022
                11 May 2022
                : 14
                : 18
                : 21392-21405
                []Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU) , Muthgasse 18, Vienna 1190, Austria
                []Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds , Leeds LS2 9JT, U.K.
                Author notes
                Author information
                © 2022 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                : 13 December 2021
                : 12 April 2022
                Research Article
                Custom metadata

                Materials technology
                pickering emulsion,surface hydrophobicity,bioactivity properties,interfacial adsorption behavior,pseudoplasticity,thixotropic feature,mechanical property,3d printing,toughening mechanism


                Comment on this article