22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rab GTPases as Physiological Substrates of LRRK2 Kinase

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          LRRK2 (Leucine-Rich Repeat Kinase 2) is a gene whose specific mutations cause Parkinson's disease (PD), the most common neurodegenerative movement disorder. LRRK2 harbors GTPase and kinase activities, two enzyme activities that play critical roles in the regulation of cellular signal transduction. Among the several LRRK2 pathogenic mutations, the most prevalent G2019S mutation increases its kinase activity when compared with the wild-type (WT), suggesting that LRRK2 kinase substrates are potential culprits of PD pathogenesis. Although there were several studies to identify LRRK2 kinase substrates, most of them mainly employed in vitro kinase assays. Therefore, it remains uncertain whether the identified substrates were real physiological substrates. However, efforts to determine physiological LRRK2 kinase substrates have recently identified several members of the Rab GTPase family as physiological LRRK2 kinase substrates. A conserved threonine or serine in the switch II domain of certain Rab GTPase family members (Rab3A/B/C/D, Rab5A/B, Rab8A/B, Rab10, Rab12, Rab29, Rab35 and Rab43) has been pinpointed to be phosphorylated by LRRK2 in cells using sophisticated phosphoproteomics technology in combination with LRRK2-specific kinase inhibitors. The Rab GTPases regulate vesicle trafficking, suggesting that LRRK2 may be a regulator of such vesicle trafficking, confirming previously suggested LRRK2 functions. However, how the consequence of the LRRK2-mediated Rab phosphorylation is related to PD pathogenesis is not clear. This review briefly summarizes the recent results about LRRK2-mediated Rab phosphorylation studies.

          Graphical Abstract

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models.

          Alpha-synuclein (alphaSyn) misfolding is associated with several devastating neurodegenerative disorders, including Parkinson's disease (PD). In yeast cells and in neurons alphaSyn accumulation is cytotoxic, but little is known about its normal function or pathobiology. The earliest defect following alphaSyn expression in yeast was a block in endoplasmic reticulum (ER)-to-Golgi vesicular trafficking. In a genomewide screen, the largest class of toxicity modifiers were proteins functioning at this same step, including the Rab guanosine triphosphatase Ypt1p, which associated with cytoplasmic alphaSyn inclusions. Elevated expression of Rab1, the mammalian YPT1 homolog, protected against alphaSyn-induced dopaminergic neuron loss in animal models of PD. Thus, synucleinopathies may result from disruptions in basic cellular functions that interface with the unique biology of particular neurons to make them especially vulnerable.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Oxidative Stress, Mitochondrial Dysfunction, and Aging

            Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in mortality that is often accompanied by many pathological diseases. Although aging is almost universally conserved among all organisms, the underlying molecular mechanisms of aging remain largely elusive. Many theories of aging have been proposed, including the free-radical and mitochondrial theories of aging. Both theories speculate that cumulative damage to mitochondria and mitochondrial DNA (mtDNA) caused by reactive oxygen species (ROS) is one of the causes of aging. Oxidative damage affects replication and transcription of mtDNA and results in a decline in mitochondrial function which in turn leads to enhanced ROS production and further damage to mtDNA. In this paper, we will present the current understanding of the interplay between ROS and mitochondria and will discuss their potential impact on aging and age-related diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              LRRK2 activation in idiopathic Parkinson’s disease

              Missense mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson’s disease (PD). However, a potential role of wild-type LRRK2 in idiopathic PD (iPD) remains unclear. Here, we developed proximity ligation assays to assess Ser1292 phosphorylation of LRRK2 and, separately, the dissociation of 14-3-3 proteins from LRRK2. Using these proximity ligation assays, we show that wild-type LRRK2 kinase activity was selectively enhanced in substantia nigra dopamine neurons in postmortem brain tissue from patients with iPD and in two different rat models of the disease. We show that this occurred through an oxidative mechanism, resulting in phosphorylation of the LRRK2 substrate Rab10 and other downstream consequences including abnormalities in mitochondrial protein import and lysosomal function. Our study suggests that, independent of mutations, wild-type LRRK2 plays a role in iPD. LRRK2 kinase inhibitors may therefore be useful for treating patients with iPD who do not carry LRRK2 mutations.
                Bookmark

                Author and article information

                Journal
                Exp Neurobiol
                Exp Neurobiol
                EN
                Experimental Neurobiology
                The Korean Society for Brain and Neural Science
                1226-2560
                2093-8144
                April 2019
                30 April 2019
                : 28
                : 2
                : 134-145
                Affiliations
                [1 ]InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea.
                [2 ]Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea.
                Author notes
                To whom correspondence should be addressed. TEL: 82-31-390-2411, FAX: 82-31-390-2414, wseolha@ 123456gmail.com
                Article
                10.5607/en.2019.28.2.134
                6526114
                31138985
                8db94924-bdcb-4601-a71b-647bf1ac1be1
                Copyright © Experimental Neurobiology 2019.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 January 2019
                : 14 February 2019
                : 21 February 2019
                Funding
                Funded by: National Research Foundation of Korea, CrossRef https://doi.org/10.13039/501100003725;
                Award ID: 2018R1D1 A1B07041153
                Categories
                Review Article

                Neurosciences
                lrrk2,rab gtpase,parkinson's disease,kinase,vesicle trafficking
                Neurosciences
                lrrk2, rab gtpase, parkinson's disease, kinase, vesicle trafficking

                Comments

                Comment on this article