33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcranial direct current stimulation (tDCS) has been used to modify motor performance in healthy and patient populations. However, our understanding of the large-scale neuroplastic changes that support such behavioural effects is limited. Here, we used both seed-based and independent component analyses (ICA) approaches to probe tDCS-induced modifications in resting state activity with the aim of establishing the effects of tDCS applied to the primary motor cortex (M1) on both motor and non-motor networks within the brain. Subjects participated in three separate sessions, during which resting fMRI scans were acquired before and after 10 min of 1 mA anodal, cathodal, or sham tDCS. Cathodal tDCS increased the inter-hemispheric coherence of resting fMRI signal between the left and right supplementary motor area (SMA), and between the left and right hand areas of M1. A similar trend was documented for the premotor cortex (PMC). Increased functional connectivity following cathodal tDCS was apparent within the ICA-generated motor and default mode networks. Additionally, the overall strength of the default mode network was increased. Neither anodal nor sham tDCS produced significant changes in resting state connectivity. This work indicates that cathodal tDCS to M1 affects the motor network at rest. In addition, the effects of cathodal tDCS on the default mode network support the hypothesis that diminished top-down control may contribute to the impaired motor performance induced by cathodal tDCS.

          Highlights

          • Resting state BOLD fMRI data was acquired before and after tDCS applied to M1.

          • Cathodal tDCS increased inter-hemispheric correlations between the M1 hand areas.

          • Cathodal tDCS increased connectivity in ICA-generated motor and default networks.

          • Cathodal tDCS increased the overall strength of the default network.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.

          In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp. Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation. Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation. By varying the current intensity and duration, the strength and duration of the after-effects could be controlled. The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bayesian analysis of neuroimaging data in FSL.

            Typically in neuroimaging we are looking to extract some pertinent information from imperfect, noisy images of the brain. This might be the inference of percent changes in blood flow in perfusion FMRI data, segmentation of subcortical structures from structural MRI, or inference of the probability of an anatomical connection between an area of cortex and a subthalamic nucleus using diffusion MRI. In this article we will describe how Bayesian techniques have made a significant impact in tackling problems such as these, particularly in regards to the analysis tools in the FMRIB Software Library (FSL). We shall see how Bayes provides a framework within which we can attempt to infer on models of neuroimaging data, while allowing us to incorporate our prior belief about the brain and the neuroimaging equipment in the form of biophysically informed or regularising priors. It allows us to extract probabilistic information from the data, and to probabilistically combine information from multiple modalities. Bayes can also be used to not only compare and select between models of different complexity, but also to infer on data using committees of models. Finally, we mention some analysis scenarios where Bayesian methods are impractical, and briefly discuss some practical approaches that we have taken in these cases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              THE ACTION OF BRIEF POLARIZING CURRENTS ON THE CEREBRAL CORTEX OF THE RAT (1) DURING CURRENT FLOW AND (2) IN THE PRODUCTION OF LONG-LASTING AFTER-EFFECTS.

                Bookmark

                Author and article information

                Contributors
                Journal
                Neuroimage
                Neuroimage
                Neuroimage
                Academic Press
                1053-8119
                1095-9572
                1 March 2014
                March 2014
                : 88
                : 100
                : 155-161
                Affiliations
                [a ]Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
                [b ]Department of Pharmacology, University of Oxford, Oxford, UK
                Author notes
                [* ]Corresponding author at: FMRIB, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK. Fax: + 44 1865 222717. charlotte.stagg@ 123456ndcn.ox.ac.uk
                Article
                S1053-8119(13)01161-0
                10.1016/j.neuroimage.2013.11.037
                3991849
                24287440
                8dbd6b92-98de-4eef-b879-60c46c7cd6d4
                © 2013 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                : 18 November 2013
                Categories
                Article

                Neurosciences
                transcranial direct current stimulation,resting state connectivity,functional mri,independent component analysis,motor,default mode

                Comments

                Comment on this article