31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The significant other: splicing by the minor spliceosome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The removal of non-coding sequences, introns, from the mRNA precursors is an essential step in eukaryotic gene expression. U12-type introns are a minor subgroup of introns, distinct from the major or U2-type introns. U12-type introns are present in most eukaryotes but only account for less than 0.5% of all introns in any given genome. They are processed by a specific U12-dependent spliceosome, which is similar to, but distinct from, the major spliceosome. U12-type introns are spliced somewhat less efficiently than the major introns, and it is believed that this limits the expression of the genes containing such introns. Recent findings on the role of U12-dependent splicing in development and human disease have shown that it can also affect multiple cellular processes not directly related to the functions of the host genes of U12-type introns. At the same time, advances in understanding the regulation and phylogenetic distribution of the minor spliceosome are starting to shed light on how the U12-type introns and the minor spliceosome may have evolved. © 2012 John Wiley & Sons, Ltd.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          RNA and disease.

          Cellular functions depend on numerous protein-coding and noncoding RNAs and the RNA-binding proteins associated with them, which form ribonucleoprotein complexes (RNPs). Mutations that disrupt either the RNA or protein components of RNPs or the factors required for their assembly can be deleterious. Alternative splicing provides cells with an exquisite capacity to fine-tune their transcriptome and proteome in response to cues. Splicing depends on a complex code, numerous RNA-binding proteins, and an enormously intricate network of interactions among them, increasing the opportunity for exposure to mutations and misregulation that cause disease. The discovery of disease-causing mutations in RNAs is yielding a wealth of new therapeutic targets, and the growing understanding of RNA biology and chemistry is providing new RNA-based tools for developing therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing.

            The survival of motor neurons (SMN) protein is essential for the biogenesis of small nuclear RNA (snRNA)-ribonucleoproteins (snRNPs), the major components of the pre-mRNA splicing machinery. Though it is ubiquitously expressed, SMN deficiency causes the motor neuron degenerative disease spinal muscular atrophy (SMA). We show here that SMN deficiency, similar to that which occurs in severe SMA, has unexpected cell type-specific effects on the repertoire of snRNAs and mRNAs. It alters the stoichiometry of snRNAs and causes widespread pre-mRNA splicing defects in numerous transcripts of diverse genes, preferentially those containing a large number of introns, in SMN-deficient mouse tissues. These findings reveal a key role for the SMN complex in RNA metabolism and in splicing regulation and indicate that SMA is a general splicing disease that is not restricted to motor neurons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rates of in situ transcription and splicing in large human genes

              Transcription and splicing must proceed over genomic distances of hundreds of kilobases in many human genes. However, the rates and mechanisms of these processes are poorly understood. We have used the compound 5,6-Dichlorobenzimidazole 1-b-D-ribofuranoside (DRB) that reversibly blocks gene transcription in vivo combined with quantitative RT-PCR to analyze the transcription and RNA processing of several long human genes. We found that the rate of RNA polymerase II transcription over long genomic distances is about 3.8 kb per minute and is nearly the same whether transcribing long introns or exon rich regions. We also determined that co-transcriptional pre-mRNA splicing of U2-dependent introns occurs within 5–10 minutes of synthesis irrespective of intron length between 1 kb and 240 kb. Similarly, U12-dependent introns were co-transcriptionally spliced within 10 minutes of synthesis confirming that these introns are spliced within the nuclear compartment. These results show that the expression of large genes is surprisingly rapid and efficient.
                Bookmark

                Author and article information

                Journal
                Wiley Interdiscip Rev RNA
                Wiley Interdiscip Rev RNA
                wrna
                Wiley Interdisciplinary Reviews. RNA
                John Wiley & Sons, Inc. (Hoboken, USA )
                1757-7004
                1757-7012
                January 2013
                16 October 2012
                : 4
                : 1
                : 61-76
                Affiliations
                Institute of Biotechnology, University of Helsinki Helsinki, Finland
                Author notes
                [†]

                Present address: Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms

                Article
                10.1002/wrna.1141
                3584512
                23074130
                8dbe2140-b481-493e-81e6-41d75b8967c1
                Copyright © 2012 John Wiley & Sons, Ltd.

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                Categories
                Advanced Reviews

                Comments

                Comment on this article