277
views
0
recommends
+1 Recommend
0 collections
    32
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chitosan based hydrogels: characteristics and pharmaceutical applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydrogel scaffolds serve as semi synthetic or synthetic extra cellular matrix to provide an amenable environment for cellular adherence and cellular remodeling in three dimensional structures mimicking that of natural cellular environment. Additionally, hydrogels have the capacity to carry small molecule drugs and/or proteins, growth factors and other necessary components for cell growth and differentiation. In the context of drug delivery, hydrogels can be utilized to localize drugs, increase drugs concentration at the site of action and consequently reduce off-targeted side effects. The current review aims to describe and classify hydrogels and their methods of production. The main highlight is chitosan-based hydrogels as biocompatible and medically relevant hydrogels for drug delivery.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogels in pharmaceutical formulations.

          N. Peppas (2000)
          The availability of large molecular weight protein- and peptide-based drugs due to the recent advances in the field of molecular biology has given us new ways to treat a number of diseases. Synthetic hydrogels offer a possibly effective and convenient way to administer these compounds. Hydrogels are hydrophilic, three-dimensional networks, which are able to imbibe large amounts of water or biological fluids, and thus resemble, to a large extent, a biological tissue. They are insoluble due to the presence of chemical (tie-points, junctions) and/or physical crosslinks such as entanglements and crystallites. These materials can be synthesized to respond to a number of physiological stimuli present in the body, such as pH, ionic strength and temperature. The aim of this article is to present a concise review on the applications of hydrogels in the pharmaceutical field, hydrogel characterization and analysis of drug release from such devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogel nanoparticles in drug delivery.

            Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biodegradation, biodistribution and toxicity of chitosan.

              Chitosan is a natural polysaccharide that has attracted significant scientific interest during the last two decades. It is a potentially biologically compatible material that is chemically versatile (-NH2 groups and various M(w)). These two basic properties have been used by drug delivery and tissue engineering scientists to create a plethora of formulations and scaffolds that show promise in healthcare. Despite the high number of published studies, chitosan is not approved by the FDA for any product in drug delivery, and as a consequence very few biotech companies are using this material. This review will aim to provide information on these biological properties that affect chitosan's safe use in drug delivery. The term "Chitosan" represents a large group of structurally different chemical entities that may show different biodistribution, biodegradation and toxicological profiles. Here we aim to review research in this area and critically discuss chitosan's potential to be used as a generally regarded as safe (GRAS) material. 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Res Pharm Sci
                Res Pharm Sci
                RPS
                Research in Pharmaceutical Sciences
                Medknow Publications & Media Pvt Ltd (India )
                1735-5362
                1735-9414
                Jan-Feb 2015
                : 10
                : 1
                : 1-16
                Affiliations
                [1 ] Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
                [2 ] Department of Cancer Immunology and Aids, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, U.S.A
                Author notes
                [* ]Corresponding authors: Z. Amoozgar, Tel: 001-765-337-7631, Fax: 008 713 2424126, Email: zohreh_amoozgar@ 123456dfci.harvard.edu S. Mohammadi Samani, Tel: 0098 713 2424128, Fax: 008 713 2424126, Email: smsamani@ 123456sums.ac.ir
                Article
                RPS-10-1
                4578208
                26430453
                8dbe46ea-4178-436a-b25e-8a54d4065d16
                Copyright: © Research in Pharmaceutical Sciences

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms

                History
                : September 2014
                : November 2014
                Categories
                Review Article

                Pharmacology & Pharmaceutical medicine
                chitosan,crosslinking,drug delivery,hydrogel,tissue engineering

                Comments

                Comment on this article