2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Clinical applications of microRNAs

      ,
      F1000Research
      F1000 Research, Ltd.

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs represent a class of small RNAs derived from polymerase II controlled transcriptional regions. The primary transcript forms one or several bulging double stranded hairpins which are processed by Drosha and Dicer into hetero-duplexes. The targeting microRNA strand of the duplex is incorporated into the RNA Induced Silencing Complex from where it silences up to hundreds of mRNA transcript by inducing mRNA degradation or blocking protein translation. Apart from involvement in a variety of biological processes, microRNAs were early recognized for their potential in disease diagnostics and therapeutics. Due to their stability, microRNAs could be used as biomarkers. Currently, there are microRNA panels helping physicians determining the origins of cancer in disseminated tumors. The development of microRNA therapeutics has proved more challenging mainly due to delivery issues. However, one drug is already in clinical trials and several more await entering clinical phases. This review summarizes what has been recognized pre-clinically and clinically on diagnostic microRNAs. In addition, it highlights individual microRNA drugs in running platforms driven by four leading microRNA-therapeutic companies.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.

          During C. elegans development, the temporal pattern of many cell lineages is specified by graded activity of the heterochronic gene Lin-14. Here we demonstrate that a temporal gradient in Lin-14 protein is generated posttranscriptionally by multiple elements in the lin-14 3'UTR that are regulated by the heterochronic gene Lin-4. The lin-14 3'UTR is both necessary and sufficient to confer lin-4-mediated posttranscriptional temporal regulation. The function of the lin-14 3'UTR is conserved between C. elegans and C. briggsae. Among the conserved sequences are seven elements that are each complementary to the lin-4 RNAs. A reporter gene bearing three of these elements shows partial temporal gradient activity. These data suggest a molecular mechanism for Lin-14p temporal gradient formation: the lin-4 RNAs base pair to sites in the lin-14 3'UTR to form multiple RNA duplexes that down-regulate lin-14 translation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.

            Two small temporal RNAs (stRNAs), lin-4 and let-7, control developmental timing in Caenorhabditis elegans. We find that these two regulatory RNAs are members of a large class of 21- to 24-nucleotide noncoding RNAs, called microRNAs (miRNAs). We report on 55 previously unknown miRNAs in C. elegans. The miRNAs have diverse expression patterns during development: a let-7 paralog is temporally coexpressed with let-7; miRNAs encoded in a single genomic cluster are coexpressed during embryogenesis; and still other miRNAs are expressed constitutively throughout development. Potential orthologs of several of these miRNA genes were identified in Drosophila and human genomes. The abundance of these tiny RNAs, their expression patterns, and their evolutionary conservation imply that, as a class, miRNAs have broad regulatory functions in animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ago HITS-CLIP decodes miRNA-mRNA interaction maps

              Summary MicroRNAs (miRNAs) play critical roles in the regulation of gene expression. However, since miRNA activity requires base pairing with only 6-8 nucleotides of mRNA, predicting target mRNAs is a major challenge. Recently, high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) has identified functional protein-RNA interaction sites. Here we use HITS-CLIP to covalently crosslink native Argonaute (Ago) protein-RNA complexes in mouse brain. This produced two simultaneous datasets—Ago-miRNA and Ago-mRNA binding sites—that were combined with bioinformatic analysis to identify miRNA-target mRNA interaction sites. We validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant miRNAs present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA action in vivo, and identifies precise sequences for targeting clinically relevant miRNA-mRNA interactions.
                Bookmark

                Author and article information

                Journal
                F1000Research
                F1000Res
                F1000 Research, Ltd.
                2046-1402
                2013
                June 6 2013
                : 2
                : 136
                Article
                10.12688/f1000research.2-136.v1
                8dbe69ec-a797-4ef8-bf40-20facdc34295
                © 2013

                http://f1000research.com/resources/NIH-publishing-agreement-manuscript-cover-sheet.pdf

                History

                Comments

                Comment on this article